
DATA MINING 2
Rule-based Classifiers
Riccardo Guidotti

a.a. 2022/2023

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Rule-based Classifier

• Classify records by using a collection of “if…then…” rules

• Rule: (Condition) ® y
• where

• Condition is a conjunction of tests on attributes
• y is the class label

• Examples of classification rules:
• (Blood Type=Warm) Ù (Lay Eggs=Yes) ® Birds
• (Taxable Income < 50K) Ù (Refund=Yes) ® Evade=No

Rule-based Classifier (Example)
R1: (Give Birth = no) Ù (Can Fly = yes) ® Birds
R2: (Give Birth = no) Ù (Live in Water = yes) ® Fishes

R3: (Give Birth = yes) Ù (Blood Type = warm) ® Mammals
R4: (Give Birth = no) Ù (Can Fly = no) ® Reptiles

R5: (Live in Water = sometimes) ® Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

Application of Rule-Based Classifier

• A rule r covers an instance x if the attributes of the instance satisfy
the condition of the rule

R1: (Give Birth = no) Ù (Can Fly = yes) ® Birds
R2: (Give Birth = no) Ù (Live in Water = yes) ® Fishes
R3: (Give Birth = yes) Ù (Blood Type = warm) ® Mammals
R4: (Give Birth = no) Ù (Can Fly = no) ® Reptiles
R5: (Live in Water = sometimes) ® Amphibians

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal

Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

Rule Coverage and Accuracy

• Coverage of a rule:
• Fraction of records that satisfy

the antecedent of a rule

• Accuracy of a rule:
• Fraction of records that satisfy

the antecedent that also satisfy
the consequent of a rule

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

(Status=Single) ® No

 Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?
R1: (Give Birth = no) Ù (Can Fly = yes) ® Birds
R2: (Give Birth = no) Ù (Live in Water = yes) ® Fishes
R3: (Give Birth = yes) Ù (Blood Type = warm) ® Mammals
R4: (Give Birth = no) Ù (Can Fly = no) ® Reptiles
R5: (Live in Water = sometimes) ® Amphibians

A lemur triggers rule R3, so it is classified as a mammal
A turtle triggers both R4 and R5
A dogfish shark triggers none of the rules

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?

Characteristics of Rule Sets: Strategy 1

• Mutually exclusive rules
• Classifier contains mutually exclusive rules if the rules are independent of

each other
• Every record is covered by at most one rule

• Exhaustive rules
• Classifier has exhaustive coverage if it accounts for every possible

combination of attribute values
• Each record is covered by at least one rule

Characteristics of Rule Sets: Strategy 2

• Rules are not mutually exclusive
• A record may trigger more than one rule
• Solution?

• Ordered rule set
• Unordered rule set – use voting schemes

• Rules are not exhaustive
• A record may not trigger any rules
• Solution?

• Use a default class

Ordered Rule Set

• Rules are rank ordered according to their priority
• An ordered rule set is known as a decision list

• When a test record is presented to the classifier
• It is assigned to the class label of the highest ranked rule it has triggered
• If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no) Ù (Can Fly = yes) ® Birds
R2: (Give Birth = no) Ù (Live in Water = yes) ® Fishes
R3: (Give Birth = yes) Ù (Blood Type = warm) ® Mammals
R4: (Give Birth = no) Ù (Can Fly = no) ® Reptiles
R5: (Live in Water = sometimes) ® Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
turtle cold no no sometimes ?

Rule Ordering Schemes

• Rule-based ordering
• Individual rules are ranked based on their quality

• Class-based ordering
• Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

Building Classification Rules

• Direct Method:
• Extract rules directly from data
• Examples: RIPPER, CN2, Holte’s 1R

• Indirect Method:
• Extract rules from other classification models (e.g. decision trees).
• Examples: C4.5rules

Direct Method: Sequential Covering

1. Start from an empty rule
2. Grow a rule using the Learn-

One-Rule function
3. Remove training records

covered by the rule
4. Repeat Step (2) and (3) until

stopping criterion is met

Example of Sequential Covering

(i) Original Data (ii) Step 1

Example of Sequential Covering…

(iii) Step 2

R1

(iv) Step 3

R1

R2

Rule Growing
• Two common strategies

Status =
Single

Status =
Divorced

Status =
Married

Income
> 80K...

Yes: 3
No: 4{ }

Yes: 0
No: 3

Refund=
No

Yes: 3
No: 4

Yes: 2
No: 1

Yes: 1
No: 0

Yes: 3
No: 1

(a) General-to-specific

Refund=No,
Status=Single,
Income=85K
(Class=Yes)

Refund=No,
Status=Single,
Income=90K
(Class=Yes)

Refund=No,
Status = Single
(Class = Yes)

(b) Specific-to-general

Rule Evaluation

• FOIL’s Information Gain

• R0: {} => class (initial rule)
• R1: {A} => class (rule after adding conjunct)

•

	
• 𝑝!: number of positive instances covered by R0
 𝑛!: number of negative instances covered by R0
 𝑝": number of positive instances covered by R1
 𝑛": number of negative instances covered by R1

FOIL: First Order Inductive Learner – an
early rule-based learning algorithm

𝐺𝑎𝑖𝑛 𝑅!, 𝑅" = 𝑝"×[𝑙𝑜𝑔#
𝑝"

𝑝" + 𝑛"
	− 𝑙𝑜𝑔#

𝑝!
𝑝! + 𝑛!

]

Minimum Description Length (MDL)

• Cost(Model,Data) = Cost(Data|Model) + x Cost(Model)
• Cost is the number of bits needed for encoding.
• Search for the least costly model.

• Cost(Data|Model) encodes the misclassification errors.
• Cost(Model) uses node encoding (number of children) plus

splitting condition encoding.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y
X1 1
X2 0
X3 0
X4 1
… …
Xn 1

X y
X1 ?
X2 ?
X3 ?
X4 ?
… …
Xn ?

!

Pessimistic Error Estimate

• Pessimistic Error Estimate of a rule set T with k rules:

• err(T): error rate on all training records
• W: trade-off hyper-parameter relative cost of adding a rule
• k: number of rules
• Ntrain: total number of training records

Direct Method: RIPPER

• For 2-class problem, choose one of the classes as positive class, and the other as
negative class
• Learn rules for positive class
• Negative class will be the default class

• For multi-class problem
• Order the classes according to increasing class prevalence (fraction of

instances that belong to a particular class)
• Learn the rule set for smallest class first, treat the rest as negative class
• Repeat with next smallest class as positive class

Direct Method: RIPPER

• Growing a rule:
• Start from empty rule
• Add conjuncts as long as they improve FOIL’s information gain
• Stop when rule no longer covers negative examples
• Prune the rule immediately using incremental reduced error pruning
• Measure for pruning: v = (p-n)/(p+n)

• p: number of positive examples covered by the rule in the validation set
• n: number of negative examples covered by the rule in the validation set

• Pruning method: delete any final sequence of conditions that maximizes v

Direct Method: RIPPER

• Building a Rule Set:
• Use sequential covering algorithm

• Finds the best rule that covers the current set of positive examples
• Eliminate both positive and negative examples covered by the rule

• Each time a rule is added to the rule set, compute the new description length
• Stop adding new rules when the new description length is d bits longer than the

smallest description length obtained so far

Direct Method: RIPPER

• Optimize the rule set:
• For each rule r in the rule set R

• Consider 2 alternative rules:
• Replacement rule (r*): grow new rule from scratch
• Revised rule (rʹ): add conjuncts to extend the rule r

• Compare the rule set for r against the rule set for r* and rʹ
• Choose rule set that minimizes MDL principle

Indirect Methods

Rule Set

r1: (P=No,Q=No) ==> -
r2: (P=No,Q=Yes) ==> +
r3: (P=Yes,R=No) ==> +
r4: (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

P

Q R

Q- + +

- +

No No

No

Yes Yes

Yes

No Yes

Indirect Method: C4.5rules

• Extract rules from an unpruned decision tree
• For each rule, r: A ® y,
• consider an alternative rule rʹ: Aʹ ® y where Aʹ is obtained by removing one

of the conjuncts in A
• Compare the pessimistic error rate for r against all rʹ s
• Prune if one of the alternative rules has lower pessimistic error rate
• Remove duplicate rules
• Repeat until we can no longer improve generalization error

Indirect Method: C4.5rules

• Instead of ordering the rules, order subsets of rules (class ordering)
• Each subset is a collection of rules with the same rule consequent (class)
• Compute description length of each subset

Example
Name Give Birth Lay Eggs Can Fly Live in Water Have Legs Class

human yes no no no yes mammals
python no yes no no no reptiles
salmon no yes no yes no fishes
whale yes no no yes no mammals
frog no yes no sometimes yes amphibians
komodo no yes no no yes reptiles
bat yes no yes no yes mammals
pigeon no yes yes no yes birds
cat yes no no no yes mammals
leopard shark yes no no yes no fishes
turtle no yes no sometimes yes reptiles
penguin no yes no sometimes yes birds
porcupine yes no no no yes mammals
eel no yes no yes no fishes
salamander no yes no sometimes yes amphibians
gila monster no yes no no yes reptiles
platypus no yes no no yes mammals
owl no yes yes no yes birds
dolphin yes no no yes no mammals
eagle no yes yes no yes birds

C4.5 versus C4.5rules versus RIPPER
C4.5rules:
(Give Birth=No, Can Fly=Yes) ® Birds

(Give Birth=No, Live in Water=Yes) ® Fishes

(Give Birth=Yes) ® Mammals

(Give Birth=No, Can Fly=No, Live in Water=No) ® Reptiles

() ® Amphibians

Give
Birth?

Live In
Water?

Can
Fly?

Mammals

Fishes Amphibians

Birds Reptiles

Yes No

Yes

Sometimes

No

Yes No

RIPPER:
(Live in Water=Yes) ® Fishes

(Have Legs=No) ® Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No)
 ® Reptiles

(Can Fly=Yes,Give Birth=No) ® Birds

() ® Mammals

C4.5 versus C4.5rules versus RIPPER

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 0 0 0 0 2
CLASS Fishes 0 3 0 0 0

Reptiles 0 0 3 0 1
Birds 0 0 1 2 1
Mammals 0 2 1 0 4

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 2 0 0 0 0
CLASS Fishes 0 2 0 0 1

Reptiles 1 0 3 0 0
Birds 1 0 0 3 0
Mammals 0 0 1 0 6

C4.5 and C4.5rules:

RIPPER:

Advantages of Rule-Based Classifiers

• Has characteristics quite similar to decision trees
• As highly expressive as decision trees
• Easy to interpret
• Performance comparable to decision trees
• Can handle redundant attributes

• Better suited for handling imbalanced classes

• Harder to handle missing values in the test set

References

• Rule-Based Classifiers. Chapter 5.1.
Introduction to Data Mining.
• https://christophm.github.io/interpretabl

e-ml-book/rules.html

https://christophm.github.io/interpretable-ml-book/rules.html
https://christophm.github.io/interpretable-ml-book/rules.html

