Data Mining2 – Advanced Aspects and Applications

Fosca Giannotti and Mirco Nanni Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://www-kdd.isti.cnr.it/

DIPARTIMENTO DI INFORMATICA - Università di Pisa anno accademico 2013/2014

Sequential Pattern Mining (revisited)

Sequential Patterns- module outline

- What are Sequential Patterns(SP) and what are they used for
- From Itemset to sequences
- Formal Definition
- Computing Sequential Patterns
- Timing Constraints

From Itemset to sequences

Given: A Transaction Database

{ cid, tid, date, item }

Find: inter-transaction patterns among customers

Example: customers typically rent "Star Wars", then "Empire Strikes Back" and then "Return of the Jedi"

	<u>cid</u>	tid	date		<u>item</u>
	1	1	01/01/2000		30
	1	2	01/02/2000		90
	2	3	01/01/2000		40,70
	2	4	01/02/2000		30
	2	5	01/03/2000		40,60,70
	3	6	01/01/2000		30,50,70
	4	7	01/01/2000		30
	4	8	01/02/2000		40,70
	4	9	01/03/2000		90
© Tan,Steibad	ch, \$ umar &	Integration by (G	iannott&Nanni) – DM2 2013-2014 ‹#›	5	90

Itemset: is a non-empty set of items,

Sequence: is an ordered list of itemsets,

e.g.
$$\{30\}$$
 $\{40,70\}$ $\}$ $\{40,70\}$ $\{30\}$ $\}$.

Size of sequence is the number of itemsets in that sequence.

<u>cid</u>	tid	date	<u>item</u>
1	1	01/01/2000	30
1	22	01/02/2000	90
2	3	01/01/2000	40,70
2	4	01/02/2000	30
2	5	01/03/2000	40, 60, 70
3	6	01/01/2000	30,50, 70
4	7	01/01/2000	30
4	8	01/02/2000	40,70
4	9	01/03/2000	90
5	10	01/01/2000	90

Each transaction of a customer can be viewed as an itemset

A Tan Steibach Kumar & Integration by (Giannott Nami) - DM 12013-2014 tomer's ordered itemsets

<u>cid</u>	customer sequence
1	<{30} {90} >
2	<{40,70} {30} {40,60,70}>
3	<{30,50,70}>
4	<{30} {40,70} {90}>
5	<{90}>

Sequence $\langle a_1 | a_2 | a_n \rangle$ is contained in sequence $\langle b_1 | b_2 | b_m \rangle$ if there exist indexes i1 \langle i2 $.... \langle$ in such that

$$\mathbf{a_1} \quad \mathbf{b_{i1}}, \, \mathbf{a_2} \quad \mathbf{b_{i2}}, \, \dots, \, \mathbf{and} \, \, \mathbf{a_n} \quad \mathbf{b_{in}}.$$

E.g.,
$$\{3\}$$
 $\{4,5\}$ $\{8\}$ is contained in $\{3,8\}$ $\{4,5,6\}$ $\{8\}$

Is
$$<$$
{3} {4,5} {8}> contained in $<$ {7} {3,8} {9}{4,5,6} {8}>?

Is
$$<$$
{3} {4,5} {8}> contained in $<$ {7} {9} {4,5,6} {3,8} {8}>?

Is
$$<$$
{3} {4,5} {8}> contained in $<$ {7} {9} {3,8}{4,5,6}>?

<u>cid</u>	customer sequence
1	<{30} {90} >
2	<{40,70} {30} {40,60,70}>
3	<{30,50,70}>
4	<{30} {40,70} {90}>
5	<{90}>

A customer supports sequence s if s is contained in the sequence for this customer.

E.g., customers 1 and 4 support sequence ≤ 30 ≤ 90

<u>cid</u>	customer sequence
1	<{30} {90} >
2	<{40,70} {30} {40,60,70}>
3	<{30,50,70}>
4	<{30} {40,70} {90}>
5	<{90}>

The support for a sequence s is defined as the fraction of total customers who support s.

E.g., customers 1 and 4 support sequence <{30} {90}>

Supp(
$$<$$
{30}} {90}>) = $2/5 = 40\%$

<u>cid</u>	customer sequence
1	<{30} {90} >
2	<{40,70} {30} {40,60,70}>
3	<{30,50,70}>
4	<{30} {40,70} {90}>
5	<{90}>

Supp(
$$\langle \{40,70\} \rangle$$
) = 2/5 = 40%
Supp($\{40,70\}$) = 3/10 = 30%

Sequences & Supports (intuition)

```
\langle I_1, I_2, ..., I_n \rangle is contained in \langle J_1, J_2, ..., J_m \rangle
If there exist h_1 < ... < h_n such that
                                       I_1 \subseteq J_{h1}, ..., I_n \subseteq J_{hn}
< \{30\}, \{90\} >  is contained in < \{30\}, \{40,70\}, \{90\} > 
< \{30\}, \{40,70\} > is contained in <math>< \{10,20\}, \{30\}, \{40,50,60,70\} > is
                            and in < {30}, {40,70}, {90} >
                        Support(s) = |\{c \mid s \text{ contained in seq}(c)\}|
                                                 number of clients
```

Support(< {20}, {70} >) = 40% Supporto(< {90} >) = 60%

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$S = \langle e_1 e_2 e_3 \dots \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - <{Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera}
 {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
 - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

• A sequence $\langle a_1 a_2 ... a_n \rangle$ is contained in another sequence $\langle b_1 b_2 ... b_m \rangle$ $(m \ge n)$ if there exist integers $i_1 \langle i_2 \langle ... \langle i_n \text{ such that } a_1 \subseteq b_{i1}, a_2 \subseteq b_{i1}, ..., a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

• Given:

- a database of sequences
- a user-specified minimum support threshold,
 minsup

Task:

Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Definition

• Given:

- a database of sequences
- a user-specified minimum support threshold, minsup

Task:

- Find all subsequences with support ≥ minsup
- Apriori property: if a sequence is large then all sequences contained in that sequence should be large.

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
- How many k-subsequences can be extracted from a given n-sequence?

$$\{a b\} \{c d e\} \{f\} \{g h i\} > n = 9$$

Answer:

$$\binom{n}{k} = \binom{9}{4} = 126$$

19

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,3,4 2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50% **Examples of Frequent Subsequences:** < {1,2} > s=60% < {2,3} > s=60% < {2,4}> s=80% < {3} {5}> s=80% < {1} {2} > s=80% < {2} {2} > s=60% < {1} {2,3} > s=60% < {2} {2,3} > s=60% < {1,2} {2,3} > s=60%

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

$$\{i_1\}$$
, $\{i_2\}$, $\{i_3\}$, ..., $\{i_n\}$

Candidate 2-subsequences:

$$\langle \{i_1, i_2\} \rangle, \langle \{i_1, i_3\} \rangle, ..., \langle \{i_1\} \{i_1\} \rangle, \langle \{i_1\} \{i_2\} \rangle, ..., \langle \{i_{n-1}\} \{i_n\} \rangle$$

Candidate 3-subsequences:

$$\langle \{i_1, i_2, i_3\} \rangle, \langle \{i_1, i_2, i_4\} \rangle, ..., \langle \{i_1, i_2\} \{i_1\} \rangle, \langle \{i_1, i_2\} \{i_2\} \rangle, ..., \langle \{i_1\} \{i_1, i_2\} \rangle, \langle \{i_1\} \{i_1\} \{i_2\} \rangle, ..., \langle \{i_1\} \{i_1\} \{i_2\} \rangle, ..., \langle \{i_2\} \{i_3\} \rangle, ..., \langle \{i_3\} \{i_4\} \{i_5\} \rangle, ..., \langle \{i_4\} \{i_5\} \rangle, ..., \langle \{i_5\} \{i_7\} \{i_8\} \rangle, ..., \langle \{i_8\} \{i_8\} \langle \{i_8\} \{i_8\} \rangle, ..., \langle \{i_8\} \{i_8\} \langle \{i_8\} \langle \{i_8\} \{i_8\} \langle \{i_8$$

21

Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
 - Agrawal & Srikant. Mining sequential patterns, ICDE' 95
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & Agrawal @ EDBT' 96)
- Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@KDD' 00; Pei, et al.@ICDE' 01)
- Vertical format-based mining: SPADE (Zaki@Machine Leanining' 00)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB' 99; Pei, Han, Wang @ CIKM' 02)
- Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM' 03)

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

• Step 2:

Repeat until no new frequent sequences are found

Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

– Candidate Pruning:

◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences

– Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

Candidate Elimination:

◆ Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <\(i_1\)> and <\(i_2\)> will produce two candidate 2-sequences: <\(i_1\) \{i_2\}> and <\(i_1\) i₂\>>
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2 .
 - If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element in w₁
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

Candidate Generation Examples

- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences $w_1 = <\{1\} \{2\ 3\} \{4\} > \text{ and } w_2 = <\{2\ 3\} \{4\} \{5\} > \text{ will produce the candidate sequence} < \{1\} \{2\ 3\} \{4\} \{5\} > \text{ because the last two events in } w_2 (4 \text{ and } 5) \text{ do not belong to the same element}$
- We do not have to merge the sequences
 w₁ =<{1} {2 6} {4}> and w₂ =<{1} {2} {4 5}>
 to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w₁ with
 < {1} {2 6} {5}>

Time constraints (1)

• Time Constraints (limite di tempo tra due transazioni)

$$\begin{split} \text{$\langle I_1,\,I_2,\,...,\,I_n\rangle$ \`e contenuta in $\langle J_1,\,J_2,\,...,\,J_m\rangle$} \\ \text{$se$ esistono $h_1<\,...$$

Sequential Pattern Mining:

Cases and Parameters

- Time interval, int, between events in the discovered pattern
 - int = 0: no interval gap is allowed, i.e., only strictly consecutive sequences are found
 - Ex. "Find frequent patterns occurring in consecutive weeks"
 - min_int ≤ int ≤ max_int: find patterns that are separated by at least min_int but at most max_int
 - ◆Ex. "If a person rents movie A, it is likely she will rent movie B within 30 days" (int \leq 30)
 - int = $c \neq 0$: find patterns carrying an exact interval
 - ◆Ex. "Every time when Dow Jones drops more than 5%, what will happen exactly two days later?" (int = 2)

Time constraints (2)

Maximum Span

 $\langle I_1, I_2, ..., I_n \rangle$ è contenuta in $\langle J_1, J_2, ..., J_m \rangle$ se esistono $h_1 \langle u_1 \langle ... \langle h_n \rangle \langle u_n \rangle$ per cui

$$I_1 \subseteq J_{h1}, ..., I_n \subseteq J_{hn}$$

 $transaction-time(J_{hn})$ - $transaction-time(J_{h1})$ < maxspan

< {30}, {70} > è contenuta in < {30}, {40}, {70}, {20,50} > se transaction-time({70}) - transaction-time({30}) < maxspan

Time constraints (3)

Sliding Windows (transazione contenuta in più transazioni)

$$\langle I_1, I_2, ..., I_n \rangle$$
 è contenuta in $\langle J_1, J_2, ..., J_m \rangle$
se esistono $h_1 \langle u_1 \langle ... \langle h_n \rangle u_n$ per cui

$$\begin{split} &I_1\subseteq U_{k=h1..u1}\ J_k\ ,\ ...,I_n\ \subseteq U_{k=hn..un}\ J_k \\ &\text{transaction-time}(J_{ui})\ -\ \text{transaction-time}(J_{hi})\ <\ \text{window-size per i=1..n} \end{split}$$

```
< {30}, {40,70} > è contenuta in < {30}, {40}, {70} > se transaction-time({70}) - transaction-time({40}) < window-size
```

Sequential Pattern Mining:

Cases and Parameters

- Duration of a time sequence T
 - Sequential pattern mining can then be confined to the data within a specified duration
 - Ex. Subsequence corresponding to the year of 1999
 - Ex. Partitioned sequences, such as every year, or every week after stock crashes, or every two weeks before and after a volcano eruption
- Event folding window w
 - If w = T, time-insensitive frequent patterns are found
 - If w = 0 (no event sequence folding), sequential patterns are found where each event occurs at a distinct time instant
 - If O < w < T, sequences occurring within the same period w are folded in the analysis

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

$x_g = 2$, $n_g = 0$, $m_g = 4$ Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Exercise(I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

x _g = 3, n _g = 0, m _g = 5 Data sequence	Subsequence	Contain?
< {1,2,3} {2,4} {2,4,5} {3,5} {6} >	< {1} {2} {3} >	Yes
< {1,2,3} {2,4} {2,4,5} {3,5} {6} >	< {1,2,3,4} {5,6} >	No
< {1,2,3} {2,4} {2,4,5} {3,5} {6} >	< {2,4} {2,4} {6} >	Yes
< {1,2,3} {2,4} {2,4,5} {3,5} {6} >	< {1} {2,4} {6} >	yes 32

© Tan, Steibach, Kumar & Integration by (Giannott & Nanni) – DM2 2013-2014 (#)

Exercise(II)

x_g: max-gap

n_g: min-gap

m_s: maximum span

x _g = 2, n _e = 0, m _e = 6, Ws=1 Data séquence	Subsequence	Contain?
< {A,B} {C,D} {A,B} {C,D} {A,B} {C,D} >	< {A,B,C,D} >	yes
< {A,B} {C,D} {A,B} {C,D} {A,B} {C,D} >	< {A} {B,C,D} {A} >	No
< {A,B} {C,D} {A,B} {C,D} {A,B} {C,D} >	< {B,C} {A,D} {B,C} }>	No
< {A,B} {C,D} {A,B} {C,D} {A,B} {C,D} }>	< {A,B,C,D} {A,B,C,D >	No 33

© Tan, Steibach, Kumar & Integration by (Giannott & Nanni) – DM2 2013-2014 (#)

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: $s = < \{1\} \{2\} >$
 - is a contiguous subsequence of
 < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of
 < {1} {3} {2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1,2} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

```
<... {a c} ... >, 
<... {a} ... {c}...> ( where time({c}) – time({a}) \leq ws) 
<...{c} ... {a} ...> (where time({a}) – time({c}) \leq ws)
```

will contribute to the support count of candidate pattern

Ref: Mining Sequential Patterns

- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT' 96.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning, 2001.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01 (TKDE' 04).
- J. Pei, J. Han and W. Wang, Constraint-Based Sequential Pattern Mining in Large Databases, CIKM'02.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- J. Wang and J. Han, BIDE: Efficient Mining of Frequent Closed Sequences, ICDE'04.
- H. Cheng, X. Yan, and J. Han, IncSpan: Incremental Mining of Sequential Patterns in Large Database, KDD'04.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- J. Yang, W. Wang, and P. S. Yu, Mining asynchronous periodic patterns in time series a Taருத்துந்து நாரு & Integration by (Giannott&Nanni) DM2 2013-2014 சு