Data Preparation

Anna Monreale

Dino Pedreschi

Università di Pisa

KDD Process

Data Sources

Data understanding vs Data preparation

Data understanding provides general information about the data like

- The existence of **missing values**
- The existence of **outliers**
- the character of attributes
- **dependencies** between attributes.

Data preparation uses this information to

- select attributes,
- reduce the dimension of the data set,
- select records,
- treat missing values,
- treat outliers,
- integrate, unify and transform data
- improve data quality

Data Reduction

Reducing the amount of data

- $-$ Reduce the number of **records**
	- Data Sampling
	- Clustering
- $-$ Reduce the number of **columns** (attributes)
	- Select a subset of attributes
	- Generate a new (a smaller) set of attributes

Sampling

- Improve the execution time of data mining algorithms
- **Problem**: how to select a subset of **representative** data?
	- $-$ **Random sampling:** it can generate problems due to the possible peaks in the data
	- $-$ Stratified sampling:
		- Approximation of the percentage of each class
		- Suitable for distribution with peaks: each peak is a **layer**

Stratified Sampling

Raw Data

Cluster/Stratified Sample

Reduction of Dimensionality

- **Selection of a subset of attributes** that is as small as possible and sufficient for the data analysis.
	- $-$ removing (more or less) **irrelevant** features
	- $-$ removing **redundant** features.

Removing irrelevant/redundant features

- For removing irrelevant features, a performance measure is needed that indicates how well a feature or subset of features performs w.r.t. the considered data analysis task
- For removing **redundant features**, either a performance measure for subsets of features or a correlation measure is needed.

Reduction of Dimensionality

Manual

- After analyzing the significance and/or **correlation** with other attributes

Automatic: Selecting the top-ranked features

- Incremental Selection of the "best" attributes
- $-$ "Best" = with respect to a specific measure of statistical significance (e.g.: information gain).

Data Cleaning

- How to handle anomalous values
- How to handle outliers
- Data Transformations

Anomalous Values

- Missing values
	- $-$ NULL, $?$
- **Unknown Values**
	- $-$ Values without a real meaning
- **Not Valid Values**
	- Values not significant

Manage Missing Values

- 1. Elimination of records
- 2. Substitution of values

Note: it can influence the original distribution of numerical values

- Use mean/median/mode
- **Estimate missing values using the probability distribution** of existing values
- Data Segmentation and using mean/mode/median of each **segment**
- Data Segmentation and using **the probability distribution within the segment**
- Build a model of **classification/regression** for computing missing values

Data Transformation: Motivations

• Data with errors and incomplete

- Data not adequately distributed
	- $-$ Strong asymmetry in the data
	- Many peaks

Data transformation can reduce these issues

Goals

• Define a transformation T on the attribute X:

 $Y=T(X)$

such that :

- Y preserve the **relevant** information of X
- Y eliminates at least one of the problems of X
- Y is more **useful** of X

Goals

Main goals:

- $-$ stabilize the variances
- $-$ normalize the distributions
- Make linear relationships among variables

• Secondary goals:

- $-$ simplify the elaboration of data containing features you do not like
- $-$ represent data in a scale considered more suitable

Why linear correlation, normal distributions, etc?

- Many statistical methods require linear correlations, normal distributions, the absence of outliers
- Many data mining algorithms have the ability to automatically treat **non-linearity** and **non-normality**
	- $-$ The algorithms work still better if such problems are treated

Normalizations

• min-max normalization

$$
v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A
$$

• z-score normalization

$$
v' = \frac{v - mean_A}{stand __dev_A}
$$

• normalization by decimal scaling

j v v 10 ' $' = \frac{v}{10^{i}}$ Where *j* is the smallest integer such that Max(| v' |)<1

Methods

• Exponential transformation

$$
T_p(x) = \begin{cases} ax^p + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}
$$

- with a,b,c,d and p real values
	- Preserve the order
	- Preserve some basic statistics
	- They are continuous functions
	- They are derivable
	- They are specified by simple functions

Better Interpretation

• Linear Transformation

 $1 \in$ = 1936.27 Lit. $-p=1$, $a=1936.27$, $b=0$ $T_p(x) = \begin{cases} ax^p + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}$ $2C = 5/9(2F - 32)$ $-p = 1$, $a = 5/9$, $b = -160/9$

Stabilizing the Variance

Logarithmic Transformation

$$
T(x) = c \log x + d
$$

- Applicable to positive values
- Makes homogenous the variance in log-normal distributions
	- E.g.: normalize seasonal peaks

Logarithmic Transformation: Example

2300 Mean 2883,3333 Scarto medio assoluto 3939,8598 Standard Deviation 5 Min 120 1° Quartile 350 Median 1775 2° Quartile 11000 Max

Logarithmic Transformation: Example

Stabilizing the Variance

$$
T(x) = ax^p + b
$$

• Square-root Transformation

- $p = 1/c$, c integer number
	- $-$ To make homogenous the variance of particular distributions e.g., Poisson Distribution

• Reciprocal Transformation

- *p < 0*
- $-$ Suitable for analyzing time series, when the variance increases too much wrt the mean

Discretization: Advantages

- Hard to understand the optimal discretization
	- We should need the real data distribution
- **Original values can be continuous and sparse**
- Discretized data can be simple to be interpreted
- Data distribution after discretization can have a **Normal shape**
- Discretized data can be too much **sparse yet** $-$ Elimination of the attribute

Unsupervised Discretization

- Characteristics:
	- No label for the instances
	- The number of classes is unknown

- Techniques of *binning*:
	- \rightarrow Intervals with the same width - Natural binning
	- Equal Frequency binning \rightarrow Intervals with the same frequency
	- Statistical binning variance, Quartile)

 \rightarrow Use statistical information (Mean,

Discretization of quantitative attributes

•**Solution**: each value is replaced by the interval to which it belongs.

- height: 0-150cm, 151-170cm, 171-180cm, >180c
- weight: 0-40kg, 41-60kg, 60-80kg, >80kg
- **income**: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

•Problem: the discretization may be useless (see weight).

How to choose intervals?

- **1.** Interval with a fixed "reasonable" granularity **Ex. intervals of 10 cm for height.**
- **2.** Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- **3.** Interval size determined by analyzing data, studying the distribution **or using clustering**

Natural Binning

- **Simple**
- Sort of values, subdivision of the range of values in *k* parts with the same size

$$
\delta = \frac{x_{\text{max}} - x_{\text{min}}}{k}
$$

Element x_j belongs to the class i if

$$
x_j \in [x_{min} + i\delta, x_{min} + (i+1)\delta)
$$

• It can generate distribution very unbalanced

Example

- $\delta = (160-100)/4 = 15$
- class $1: [100, 115)$
- class 2: [115,130)
- class 3: [130,145)
- class 4: [145, 160]

Equal Frequency Binning

• Sort and count the elements, definition of k intervals of f , where:

$$
f = \frac{N}{k}
$$

 $(N =$ number of elements of the sample)

- The element x_i belongs to the class j if $j \times f \leq i \leq (j+1) \times f$
- It is not always suitable for highlighting interesting correlations

Example

- $f = 12/4 = 3$
- class 1: {100,110,110}
- class $2: \{120, 120, 125\}$
- class $3: \{130, 130, 135\}$
- class $4: \{140, 150, 160\}$

How many classes?

If too few

 \Rightarrow Loss of information on the distribution

• If too many

=> Dispersion of values and does not show the form of distribution

• The optimal number of classes is function of N elements (Sturges, 1929)

$$
C = 1 + \frac{10}{3} \log_{10}(N)
$$

• The optimal width of the classes depends on the variance and the number of data (Scott, 1979)

$$
h = \frac{3.5 \cdot s}{\sqrt{N}}
$$

Supervised Discretization

- Characteristics:
	- The discretization has a quantifiable goal
	- The number of classes is known
- Techniques:
	- ChiMerge
	- discretization based on Entropy
	- discretization based on percentiles

Supervised Discretization: ChiMerge

- **Bottom-up Process:**
	- $-$ Initially each value corresponds to an interval
	- $-$ Adjacent Intervals are iteratively merged if similar
	- $-$ The similarity is measured on the bases of the target attribute, measuring how much the two intervals are "different".

Entropy based approach

• Minimizes the entropy

Similarity

Similarity and Dissimilarity

• **Similarity**

- $-$ Numerical measure of how alike two data objects are.
- $-$ Is higher when objects are more alike.
- $-$ Often falls in the range $[0,1]$

• **Dissimilarity**

- $-$ Numerical measure of how different are two data objects
- $-$ Lower when objects are more alike
- $-$ Minimum dissimilarity is often 0
- $-$ Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for ONE Attribute

p and *q* are the attribute values for two data objects.

Table 5.1. Similarity and dissimilarity for simple attributes

Many attributes: Euclidean Distance

• Euclidean Distance

$$
dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}
$$

Where *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the value of kth attributes (components) or data objects p and q.

• Standardization is necessary, if scales differ.

Euclidean Distance

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$
dist = \left(\sum_{k=1}^{n} |p_k - q_k|^{r}\right)^{\frac{1}{r}}
$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the k_{th} attributes (components) or data objects *p* and *q*.

Minkowski Distance: Examples

- $r = 1$. City block (Manhattan, taxicab, L_1 norm) distance.
— A common example of this is the Hamming distance, which is just the number of
	- bits that are different between two binary vectors
- $r = 2$. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
	- This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

Distance Matrix

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less **MERGINISH OF LEVITIC ICSS**

• Randomly generate 500 points

• Compute difference between max and min

-
- **distance between any pair of points**

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
	- *1. d(p, q)* \geq *0* for all *p* and *q* and *d(p, q)* = *0* only if $p = q$. (Positive definiteness)
	- 2. *d(p, q)* = $d(q, p)$ for all *p* and *q*. (Symmetry)
	- 3. d(p, r) $\leq d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where $d(p, q)$ is the distance (dissimilarity) between points (data objects), *p* and *q*.

A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
	- 1. *s(p, q)* = 1 (or maximum similarity) only if $p = q$.
	- 2. *s(p, q)* = *s(q, p)* for all *p* and *q*. (Symmetry)

where $s(p, q)$ is the similarity between points (data objects), *p* and *q*.

Binary Data

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients $SMC =$ number of matches / number of attributes = $(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

 $J =$ number of 11 matches / number of not-both-zero attributes values $= (M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

 $p = 10000000000$ *q* = 00000001001

 M_{01} = 2 (the number of attributes where p was 0 and q was 1) M_{10} = 1 (the number of attributes where p was 1 and q was 0) M_{00} = 7 (the number of attributes where p was 0 and q was 0) M_{11} = 0 (the number of attributes where p was 1 and q was 1)

$$
SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7
$$

$$
J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0
$$

Document Data

Cosine Similarity

• If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$ where \bullet indicates vector dot product and $|| d ||$ is the length of vector d.

• Example:

 d_1 = 3205000200 d_2 = 10000000102

 $d_1 \cdot d_2 = 3 \cdot 1 + 2 \cdot 0 + 0 \cdot 0 + 5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 2 \cdot 1 + 0 \cdot 0 + 0 \cdot 2 = 5$ $||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42) ^{0.5} = 6.481$ $||d_2|| = (1^*1+0^*0+0^*0+0^*0+0^*0+0^*0+0^*0+1^*1+0^*0+2^*2)$ ^{0.5} = (6)^{0.5} = 2.245

cos(d_1 , d_2) = .3150

Correlation

- Correlation measures the linear relationship between objects (binary or continuos)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$
p'_{k} = (p_{k} - mean(p))
$$

$$
q'_{k} = (q_{k} - mean(q))
$$

 $correlation(p,q) = (p' \cdot q')/(n-1)std(p)std(q)$

