Data Preparation

Anna Monreale

Dino Pedreschi

Università di Pisa

KDD Process

Data understanding vs Data preparation

Data understanding provides general information about the data like

- The existence of missing values
- The existence of **outliers**
- the character of attributes
- dependencies between attributes.

Data preparation uses this information to

- select attributes,
- reduce the dimension of the data set,
- select records,
- treat missing values,
- treat outliers,
- integrate, unify and transform data
- improve data quality

Data Reduction

Reducing the amount of data

- Reduce the number of records
 - Data Sampling
 - Clustering
- Reduce the number of columns (attributes)
 - Select a subset of attributes
 - Generate a new (a smaller) set of attributes

Sampling

- Improve the execution time of data mining algorithms
- Problem: how to select a subset of representative data?
 - Random sampling: it can generate problems due to the possible peaks in the data
 - Stratified sampling:
 - Approximation of the percentage of each class
 - Suitable for distribution with peaks: each peak is a layer

Stratified Sampling

Raw Data

Cluster/Stratified Sample

Reduction of Dimensionality

- Selection of a subset of attributes that is as small as possible and sufficient for the data analysis.
 - removing (more or less) irrelevant features
 - removing redundant features.

Removing irrelevant/redundant features

 For removing irrelevant features, a performance measure is needed that indicates how well a feature or subset of features performs w.r.t. the considered data analysis task

 For removing redundant features, either a performance measure for subsets of features or a correlation measure is needed.

Reduction of Dimensionality

Manual

After analyzing the significance and/or correlation with other attributes

Automatic: Selecting the top-ranked features

- Incremental Selection of the "best" attributes
- "Best" = with respect to a specific measure of statistical significance (e.g.: information gain).

Data Cleaning

- How to handle anomalous values
- How to handle outliers
- Data Transformations

Anomalous Values

- Missing values
 - NULL,?
- Unknown Values
 - Values without a real meaning
- Not Valid Values
 - Values not significant

Manage Missing Values

- 1. Elimination of records
- 2. Substitution of values

Note: it can influence the original distribution of numerical values

- Use mean/median/mode
- Estimate missing values using the probability distribution of existing values
- Data Segmentation and using mean/mode/median of each segment
- Data Segmentation and using the probability distribution within the segment
- Build a model of classification/regression for computing missing values

Data Transformation: Motivations

Data with errors and incomplete

- Data not adequately distributed
 - Strong asymmetry in the data
 - Many peaks

Data transformation can reduce these issues

Goals

• Define a transformation T on the attribute X:

$$Y = T(X)$$

such that:

- Y preserve the **relevant** information of X
- Y eliminates at least one of the problems of X
- Y is more **useful** of X

Goals

Main goals:

- stabilize the variances
- normalize the distributions
- Make linear relationships among variables

Secondary goals:

- simplify the elaboration of data containing features you do not like
- represent data in a scale considered more suitable

Why linear correlation, normal distributions, etc?

 Many statistical methods require linear correlations, normal distributions, the absence of outliers

- Many data mining algorithms have the ability to automatically treat non-linearity and non-normality
 - The algorithms work still better if such problems are treated

Normalizations

min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization

$$v' = \frac{v - mean_A}{stand _dev_A}$$

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max($|v'|$)<1

Methods

Exponential transformation

$$T_p(x) = \begin{cases} ax^p + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}$$

- with a,b,c,d and p real values
 - Preserve the order
 - Preserve some basic statistics
 - They are continuous functions
 - They are derivable
 - They are specified by simple functions

Better Interpretation

Linear Transformation

1€ = 1936.27 Lit.
-
$$p=1$$
, $a=1936.27$, $b=0$
 $^{\circ}$ C= 5/9($^{\circ}$ F -32)
- $p=1$, $a=5/9$, $b=-160/9$

$$T_p(x) = \begin{cases} ax^p + b & (p \neq 0) \\ c \log x + d & (p = 0) \end{cases}$$

Stabilizing the Variance

Logarithmic Transformation

$$T(x) = c \log x + d$$

- Applicable to positive values
- Makes homogenous the variance in log-normal distributions
 - E.g.: normalize seasonal peaks

Logarithmic Transformation: Example

Bar	Birra	Ricavo
Α	Bud	20
Α	Becks	10000
С	Bud	300
D	Bud	400
D	Becks	5
E	Becks	120
E	Bud	120
F	Bud	11000
G	Bud	1300
Н	Bud	3200
Н	Becks	1000
I	Bud	135

2300 Mean
2883,3333 Scarto medio assoluto
3939,8598 Standard Deviation
5 Min
120 1° Quartile
350 Median
1775 2° Quartile
11000 Max

Data are sparse!!!

Logarithmic Transformation: Example

Bar	Birra	Ricavo (log)
Α	Bud	1,301029996
Α	Becks	4
С	Bud	2,477121255
D	Bud	2,602059991
D	Becks	0,698970004
Е	Becks	2,079181246
Е	Bud	2,079181246
F	Bud	4,041392685
G	Bud	3,113943352
Н	Bud	3,505149978
Н	Becks	3
I	Bud	2,130333768

Media	2,585697
Scarto medio assoluto	0,791394
Deviazione standard	1,016144
Min	0,69897
Primo Quartile	2,079181
Mediana	2,539591
Secondo Quartile	3,211745
Max	4,041393

Stabilizing the Variance

$$T(x) = ax^p + b$$

- Square-root Transformation
- p = 1/c, c integer number
 - To make homogenous the variance of particular distributions e.g., Poisson Distribution
- Reciprocal Transformation
 - p < 0
 - Suitable for analyzing time series, when the variance increases too much wrt the mean

Discretization: Advantages

- Hard to understand the optimal discretization
 - We should need the real data distribution
- Original values can be continuous and sparse
- Discretized data can be simple to be interpreted
- Data distribution after discretization can have a Normal shape
- Discretized data can be too much sparse yet
 - Elimination of the attribute

Unsupervised Discretization

- Characteristics:
 - No label for the instances
 - The number of classes is unknown

- Techniques of binning:
 - Natural binning

- → Intervals with the same width
- Equal Frequency binning → Intervals with the same frequency
- Statistical binning variance, Quartile)

→ Use statistical information (Mean,

Discretization of quantitative attributes

•Solution: each value is replaced by the interval to which it belongs.

• height: 0-150cm, 151-170cm, 171-180cm, >180c

• weight: 0-40kg, 41-60kg, 60-80kg, >80kg

• income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- 2. Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- 3. Interval size determined by analyzing data, studying the distribution or using clustering

Natural Binning

- Simple
- Sort of values, subdivision of the range of values in k parts with the same size

$$\delta = \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

• Element x_j belongs to the class i if

$$x_j \in [x_{min} + i\delta, x_{min} + (i+1)\delta)$$

It can generate distribution very unbalanced

Example

Bar	Beer	Price
A	Bud	100
A	Becks	120
C	Bud	110
D	Bud	130
D	Becks	150
Е	Becks	140
Е	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
I	Bud	135

- $\delta = (160-100)/4 = 15$
- class 1: [100,115)
- class 2: [115,130)
- class 3: [130,145)
- class 4: [145, 160]

Equal Frequency Binning

• Sort and count the elements, definition of k intervals of f, where:

$$f = \frac{N}{k}$$

(N = number of elements of the sample)

• The element x_i belongs to the class j if $j \times f \le i < (j+1) \times f$

It is not always suitable for highlighting interesting correlations

Bar	Beer	Price
A	Bud	100
A	Becks	120
C	Bud	110
D	Bud	130
D	Becks	150
Е	Becks	140
Е	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
I	Bud	135

Example

- f = 12/4 = 3
- class 1: {100,110,110}
- class 2: {120,120,125}
- class 3: {130,130,135}
- class 4: {140,150,160}

How many classes?

- If too few
 - ⇒ Loss of information on the distribution
- If too many
 - => Dispersion of values and does not show the form of distribution
- The optimal number of classes is function of N elements (Sturges, 1929)

$$C = 1 + \frac{10}{3} \log_{10}(N)$$

 The optimal width of the classes depends on the variance and the number of data (Scott, 1979)

$$h = \frac{3.5 \cdot s}{\sqrt{N}}$$

Supervised Discretization

Characteristics:

- The discretization has a quantifiable goal
- The number of classes is known

Techniques:

- ChiMerge
- discretization based on Entropy
- discretization based on percentiles

Supervised Discretization: ChiMerge

Bottom-up Process:

- Initially each value corresponds to an interval
- Adjacent Intervals are iteratively merged if similar
- The similarity is measured on the bases of the target attribute, measuring how much the two intervals are "different".

Entropy based approach

Minimizes the entropy

Similarity

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for ONE Attribute

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d} \text{ or}$ $s = 1 - \frac{d - min - d}{max - d - min - d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Many attributes: Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the value of k^{th} attributes (components) or data objects p and q.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
р4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k_{th} attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p 4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p 4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Binary Data

Categorical	insufficient	sufficient	good	very good	excellent
p1	0	0	1	0	0
p2	0	0	1	0	0
р3	1	0	0	0	0
p4	0	1	0	0	0
item	bread	butter	milk	apple	tooth-past
p1	1	1	0	1	
p2	0	0	1	1	
р3	1	1	1	0	
p4	1	0	1	1	

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

```
p = 1000000000
q = 0000001001
```

```
M_{01} = 2 (the number of attributes where p was 0 and q was 1)
```

$$M_{10} = 1$$
 (the number of attributes where p was 1 and q was 0)

$$M_{00} = 7$$
 (the number of attributes where p was 0 and q was 0)

$$M_{11} = 0$$
 (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Document Data

	team	coach	pla y	ball	score	game	ם <u>עׂ.</u>	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$ where indicates vector dot product and ||d|| is the length of vector d.
- Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuos)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$p'_k = (p_k - mean(p))$$

$$q'_k = (q_k - mean(q))$$

$$correlation(p,q) = (p' \circ q')/(n-1)std(p)std(q)$$

