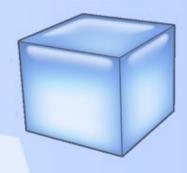


BICOOP - Churn Analisys

Definizione del concetto di abbandono e creazione di modelli previsionali

Mirco Nanni KDD Lab,ISTI-CNR, Pisa mirco.nanni@isti.cnr.it


Sommario

- Introduzione
- Preparazione dei dati
- Modelli
- Valutazione dei risultati
- Scenario d'uso
- Conclusioni

Introduzione

Obiettivo:

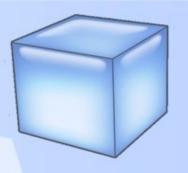
- definire opportunamente il concetto di fedeltà del cliente
- fornire strumenti previsionali in grado di stimare la fedeltà dei clienti nel futuro prossimo:
- individuare:
 - clienti che diminuiranno la loro attività
 - clienti che cesseranno definitivamente il rapporto

Finalità:

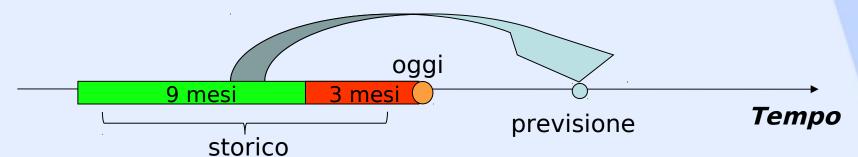
- arricchire la conoscenza dei propri clienti
- innescare meccanismi di customer redemption

Abbandono

Definizione del problema:

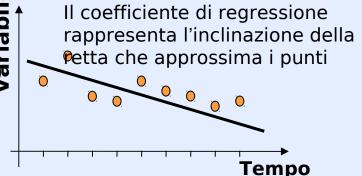

- Stimare la probabilità di abbandono dei clienti a partire dalle informazioni presenti nel data warehouse:
 - dati di vendita
 - dati anagrafici

Definizione di abbandono:

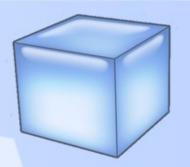

- Un cliente è a rischio di abbandono quando evidenzia un netto calo nelle sue misure di spesa:
 - visite
 - volumi di spesa

Analisi previsionale

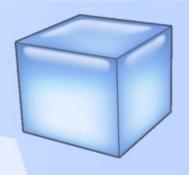
- Raccolta dei dati storici per l'estrazione di:
 - Variabili di vendita e anagrafiche, i predittori (periodo verde)
 - Variabili obiettivo (periodo rosso)
- Costruzione di un modello predittivo
 - Addestrato in modo opportuno su dati storici
 - Utilizzabile per ottenere informazioni previsionali



Preparazione dati – osservazioni (periodo verde)


Si sono estratte dal data warehouse, per il periodo di 9 mesi (Dicembre 2006 – Agosto 2007) le seguenti informazioni:

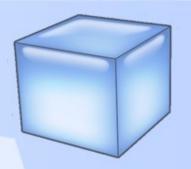
- Dati anagrafici (sesso, età, professione etc.)
- Dati di spesa
 - Globale
 - Settori specifici: fresco, carni, pesce, ortofrutta
 - Pesata (abbattimento no-food)
- •Trend di spesa:
 - Tipologia cliente (per ogni mese
 - Regressione spese
 - Regressione spesa
 - Regressione battute

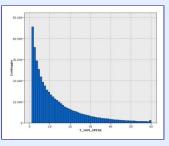

Preparazione dati – target (periodo rosso)

- Si sono estratte dal data warehouse, per il periodo di 3 mesi (Settembre 2007 – Novembre 2007) le seguenti informazioni:
 - Numero di spese
 - Variazione di spesa rispetto al periodo verde
 - Volume di spesa
 - Battute di cassa
 - Numero di visite

Dataset

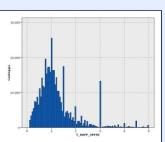
 Il dataset così ottenuto presenta una riga per ogni cliente che ha effettuato almeno una spesa nei nove mesi di osservazione. In Predittori Anagrafici Predittori di spesa Predittori di trend Variabili

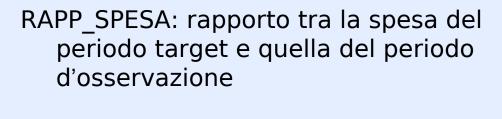

- 517.000 righ

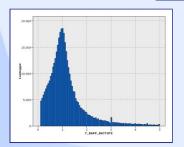

- 47 attibuti

Predittori Anagrafici	Predittori di spesa	Predittori di trend	Variabili target
CLIENTE_ID	DATA_ULTIMA_SPESA	TIPOLOGIA_01	T_NUM_SPESE
SESSO	NUM_SPESE	TIPOLOGIA_02	T_RAPP_SPESE
STATO_CIVILE	SPESA_TOT	TIPOLOGIA_03	T_RAPP_SPESA
PROFESSIONE	SPESA_TOT_PESATA	TIPOLOGIA_04	T_RAPP_BATTUTE
TITOLO_STUDIO	SPESA_MEDIA	TIPOLOGIA_05	
PROVINCIA	SPESA_MEDIA_PESATA	TIPOLOGIA_06	
REGIONE	BATTUTE	TIPOLOGIA_07	
ANNO_SOCIO	FRESCHI_TOT	TIPOLOGIA_08	
FASCIA_ANNO_SOCIO	FRESCHI_SPESE	TIPOLOGIA_09	
fl_invio_rivista	CARNI_TOT	TIPOLOGIA_MEDIA	
COD_NEGOZIO	CARNI_SPESE	TIPOLOGIA_ZERI	
ETA	PESCE_TOT	REGR_NUM_SPESE	
ETA_FASCIA	PESCE_SPESE	REGR_SPESA	
	ORTOFRUTTA_TOT	REGR_SPESA_PESATA	
	ORTOFRUTTA_SPESE	REGR_BATTUTE	

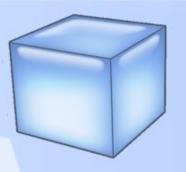


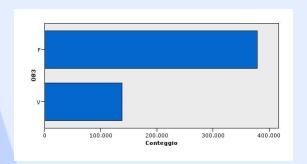

Funzioni Obiettivo

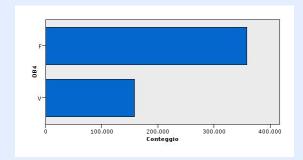


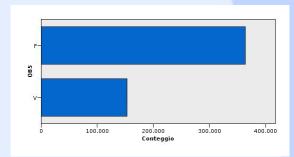

NUM_SPESE: spese del cliente nel periodo target

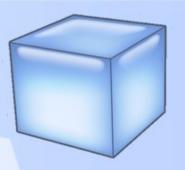
RAPP_SPESE: rapporto tra il numero delle spese del periodo target e quello del periodo d'osservazione

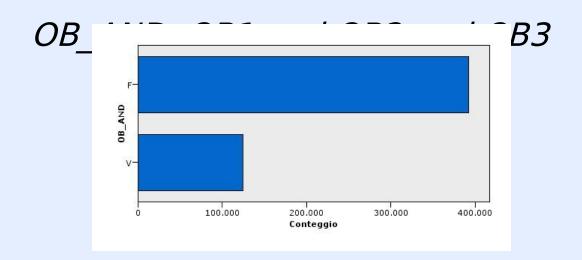



RAPP_BATTUTE: rapporto fra le battute di cassa del periodo target e guelle del

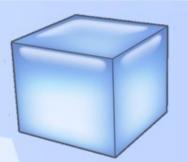

F. Obiettivo - Soglie


- Scelta una soglia di allarme per indicare un possibile cliente defezionario i rapporti si trasformano in tre indicatori di abbandono
- Abbiamo scelto come soglia una diminuzione sulle 3 misure del 50%
- Otteniamo le seguenti distribuzioni:

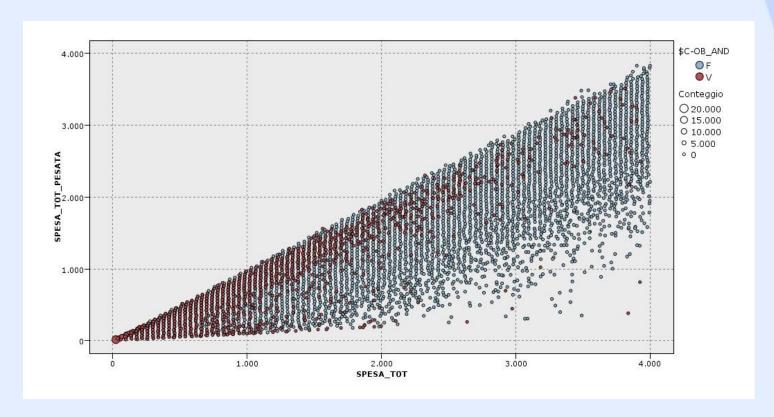

OB2: RAPP_SPESA


OB3: RAPP BATTUTE

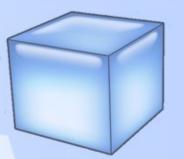
F. Obiettivo - Sintesi



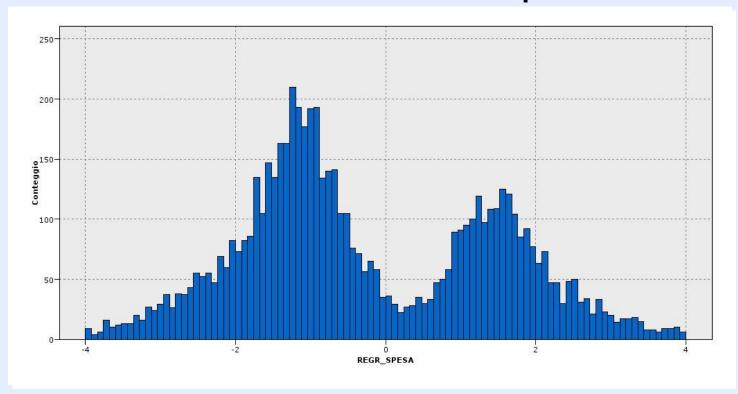
Per la funzione obiettivo finale si è deciso di considerare come potenziali defezionari tutti i clienti che superato la soglia di allarme, in ognuno dei tre indicatori OB1, OB2, OB3:



Modello previsionale e Risultati



Distribuzione spesa totale vs. spesa pesata



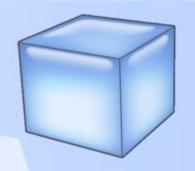
Modello previsionale e Risultati

Distribuzione trend di spesa

Trend dei clienti con spesa totale > 400€

Modello previsionale e Risultati

Esempio di regole associative:

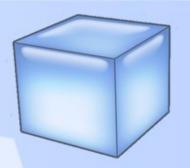

```
e TIPOLOGIA_01 = 7
e TIPOLOGIA_09 = 0
e TIPOLOGIA_ZERI > 2
e REGR BATTUTE <= -0,98
allora V (confidenza 82,8%)
se DATA_ULTIMA_SPESA > 183
e NUM SPESE <= 21
e TIPOLOGIA_ZERI > 1
e REGR_NUM_SPESE <= -0,02
e REGR_BATTUTE <= -0,98
allora V (confidenza 92%)
```

se REGIONE = TOSCANA

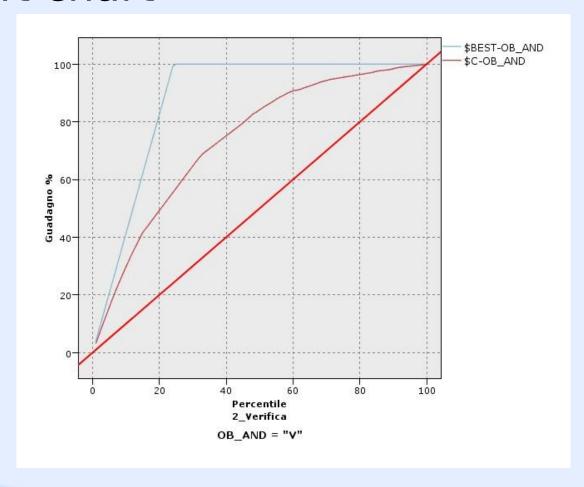
e NUM_SPESE <= 128

Modello previsionale Risultati Globali

- Correttezza generale del modello:
 - 81.06% sul training set (70% del dataset, 360.000 righe)
 - 80.94% sul test set (30% del dataset, 155.000 righe)
- Matrici di confusione:


Valori Reali	Training Set	F	V
	F	256.608	17.920
	V	50.540	36.466

Test Set	F	v	
F	110.029	7.767	66.9%
V	21.855	15.734	00.970


Con un guadagno netto del 42.8%

Modello previsionale Risultati Globali

Lift chart

Scenario d'uso - Esempio

 Creare un ambiente aperto e dinamico nel quale i dati forniti dal data warehouse vengono elaborati e trasformati in mode

Mining

Business

Intelligence

• I modelli previsionali possono essere usati per arricchire il data warehouse, innestando un circolo virtuoso di informazioni utilizzabili anche direttamente in ambienti di Business Intelligence.

Data

Warehouse

Conclusioni

Per concludere:

- Sono stati utilizzati dati provenienti dal data warehouse,
 risparmiando tempo e ottenendo dati di buona qualità
- Abbiamo usato tecniche di mining avanzate per generare modelli predittivi, principalmente regole associative e alberi di decisione.
- I risultati ottenuti sono soddisfacenti e si intravedono buone prospettive di miglioramento

Possibili sviluppi futuri

- Sperimentazione di altri tipi di analisi: sub group analysis, market segmentation, clustering ect.
- Consolidamento e validazione dei risultati ottenuti
- Incrementare la collaborazione con gli esperti del dominio per una migliore taratura del problema, delle definizioni usate e delle funzioni obiettivo
- Integrazione dei dati previsionali forniti dai modelli predittivi all'interno della struttura di business intelligence aziendale