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Density Based Clustering

#» Basic ldea:

Clusters are dense regions in the
data space, separated by regions
of lower object density

Results of a kA-medoid
algorithm for k=4
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DBSCAN

e DBSCAN is a density-based algorithm.

—  Density = number of points within a specified radius (Eps)

— A point is a core point if it has at least a specified number of
points (MinPts) within Eps

¢ These are points that are at the interior of a cluster
¢ Counts the point itself

— A border point is not a core point, but is in the neighborhood
of a core point

— A noise point is any point that is not a core point or a border
point

02/14/2018 Introduction to Data Mining, 2" Edition 3



DBSCAN: Core, Border, and Noise Points

MinPts =7

border point core point

noise point
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Density Based Clustering

Step 1: label points as core (dense), border and
noise

* Based on thresholds R (radius of neighborhood) and
min_pts (min number of neighbors)

Core object
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Density Based Clustering

Step 2: connect core objects that are neighbors,
and put them in the same cluster
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Density Based Clustering

Step 3: associate border objects to (one of) their
core(s), and remove noise
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Density-Reachability

H Directly density-reachable
(JAn object q is directly density-reachable from
object p if p is a core object and q is in p’s &-
neighborhood.

B qis directly density-reachable from p

B p is not directly density- reachable
from q?

B Density-reachability is asymmetric.

MinPts =4
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Density-Reachability

B Density-Reachable (directly and indirectly):
A point p is directly density-reachable from p2;
 p2 is directly density-reachable from p1;

O p1is directly density-reachable from q;

<q form a chain.

M p is (indirectly) density-reachable
from q

B ¢ is not density- reachable from p?

MinPts =7
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Density-Reachability

B Density-reachable is not symmetric

] not good enough to describe clusters

B Density-Connected

A pair of points p and q are density-connected
if they are commonly density-reachable from a
point o.

B Density-connectivity is
symmetric
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DBSCAN Algorithm

Input: The data set D
Parameter: g, MinPts

For each objectp in D
if p is a core object and not processed then
C =retrieve all objects density-reachable from p
mark all objects in C as processed
report C as a cluster
else mark p as outlier
end if

End For
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. DBSCAN

< Example:
<~ Radius ¢ as shown below (Euclidean distance).
< Minimum support m = 7.
<~ What are the clusters?
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. DBSCAN

< Example:
<~ Radius ¢ as shown below (Euclidean distance).
< Minimum support m = 7.
<~ What are the clusters?
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. DBSCAN

< Example:
<~ Radius ¢ as shown below (Euclidean distance).
< Minimum support m = 7.
<~ What are the clusters?
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. DBSCAN

< Example:
<~ Radius ¢ as shown below (Euclidean distance).
< Minimum support m = 7.
<~ What are the clusters?
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. DBSCAN

< Example:
<~ Radius £ as shown below (Euclidean distance).
< Minimum support m = 7.
<~ 2 clusters in this example.
<~ Lower-right grouping not dense enough to form a cluster.
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Points

ISe

Core, Border and Noi

DBSCAN

Point types: core,

Original Points

border and noise

=4

Eps =10, MinPts
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When DBSCAN Works Well
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Clusters

Original Points

* Resistant to Noise

« Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

Original Points

 Varying densities

* High-dimensional data
(MinPts=4, Eps=9.92)
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DBSCAN: Determining EPS and MinPts

e I|dea is that for points in a cluster, their k" nearest
neighbors are at roughly the same distance

e Noise points have the k" nearest neighbor at farther
distance

e So, plot sorted distance of every point to its k"
nearest neighbor
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4th Nearest Neighbor Distance
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