Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Lecture Notes for Chapter 4

Introduction to Data Mining by Tan, Steinbach, Kumar

1

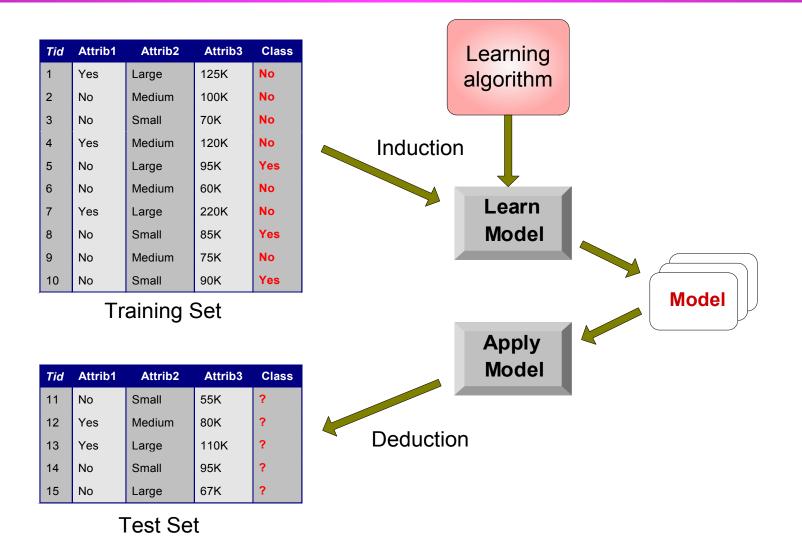
Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of *attributes*, one of the attributes is the *class*.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Supervised learning

- Cluster analysis and association rules are not concerned with a specific target attribute.
- Supervised learning refers to problems where the value of a target attribute should be predicted based on the values of other attributes.
- Problems with a categorical target attribute are called classification, problems with a numerical target attribute are called regression.

Illustrating Classification Task



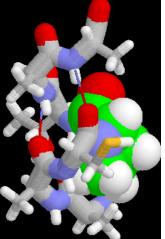
Examples of Classification Task

Predicting tumor cells as benign or malignant

 Classifying credit card transactions as legitimate or fraudulent

- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc

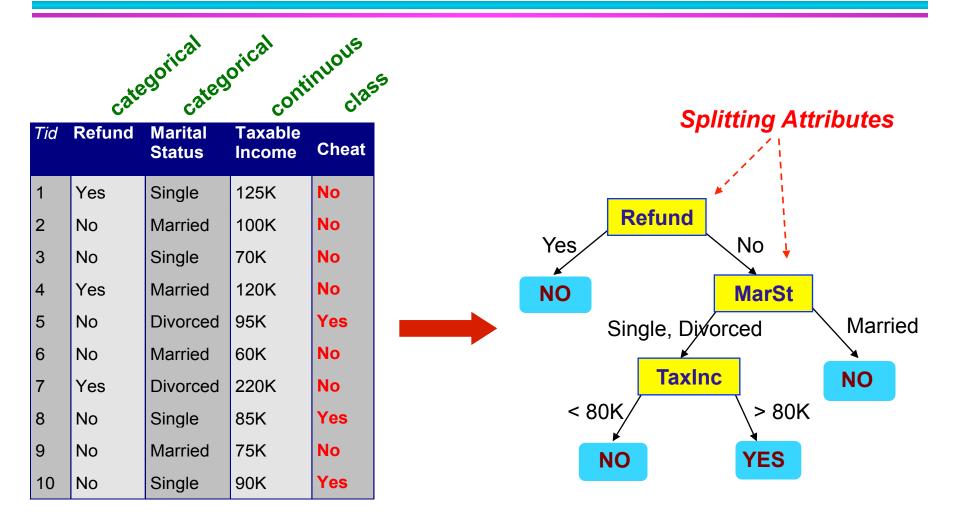
Introduction to Data Mining



Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Example of a Decision Tree

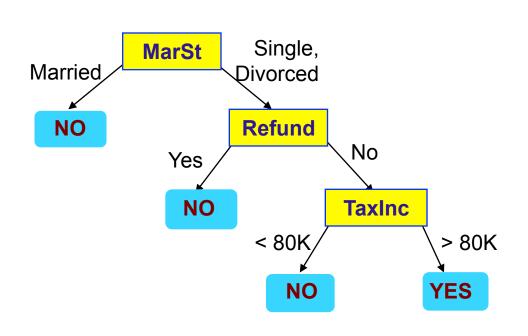


Training Data

Model: Decision Tree

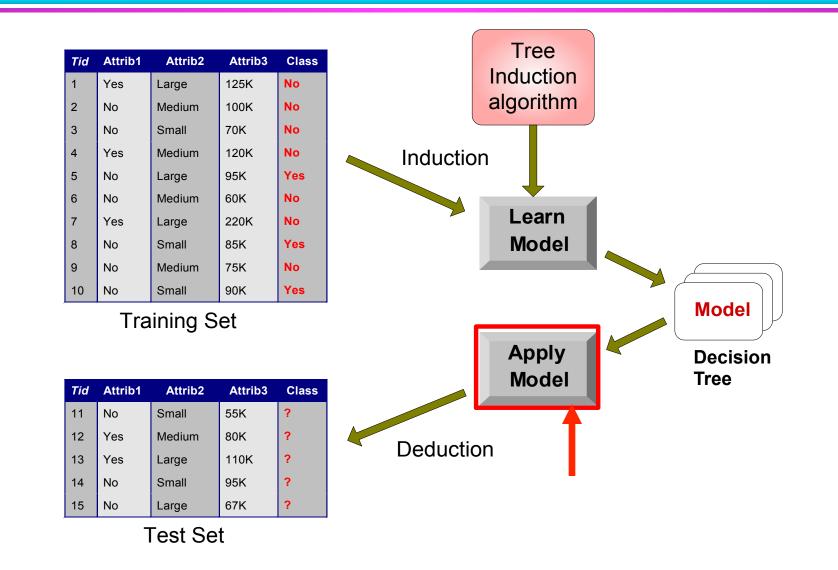
C	Tan	.Stei	nbach	n, k	Kumar
-		,		-, -	

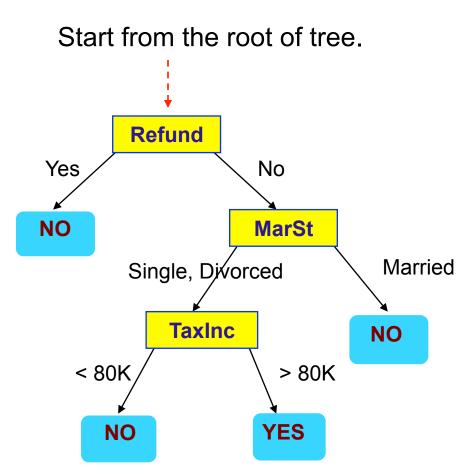
Another Example of Decision Tree



There could be more than one tree that fits the same data!

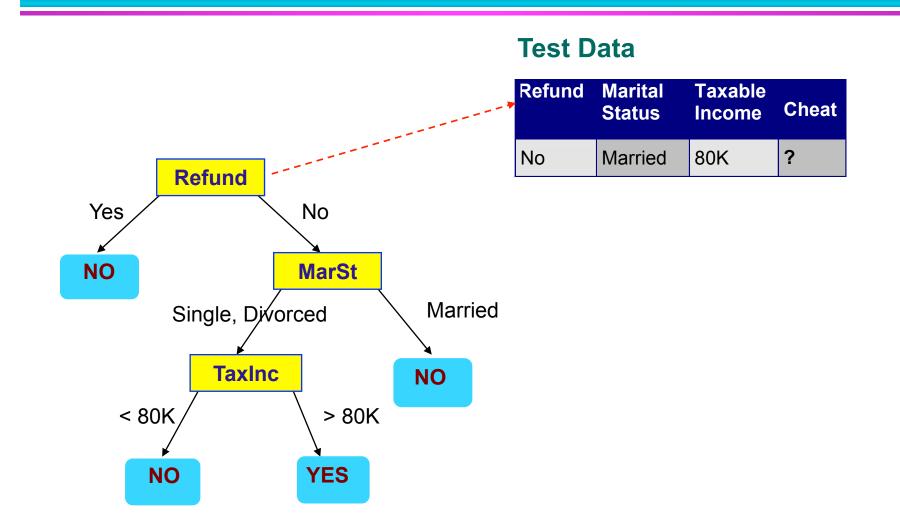
Decision Tree Classification Task

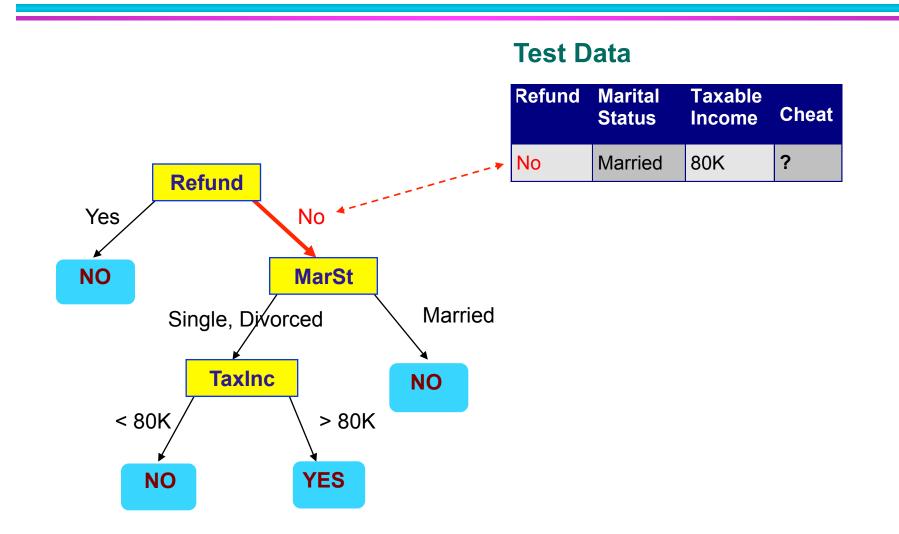


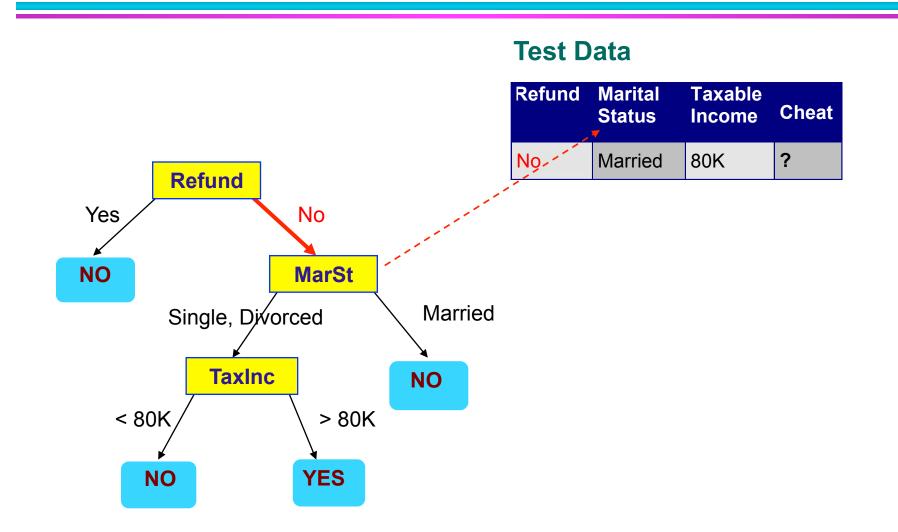


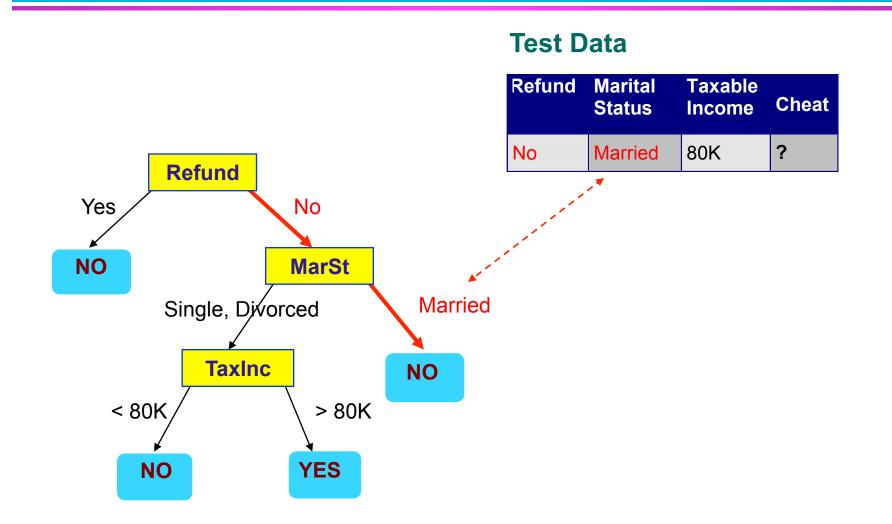
Test Data

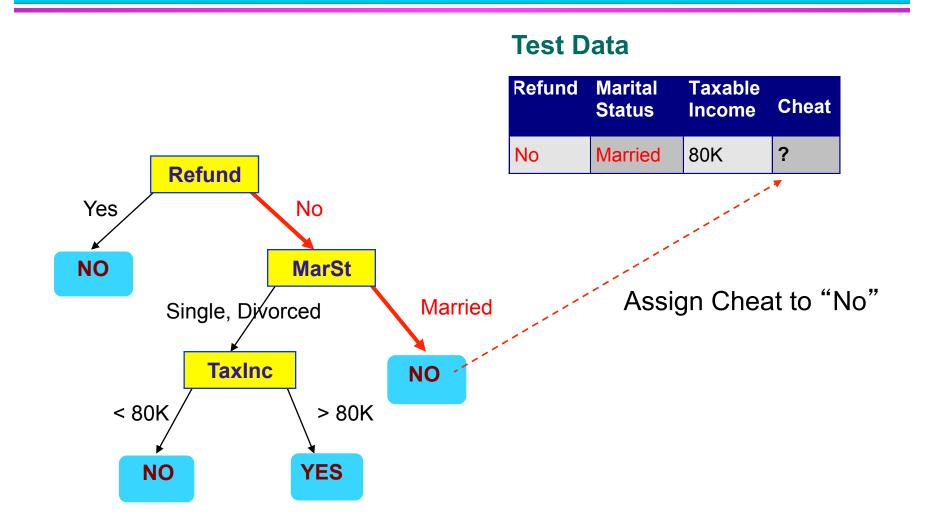
Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?



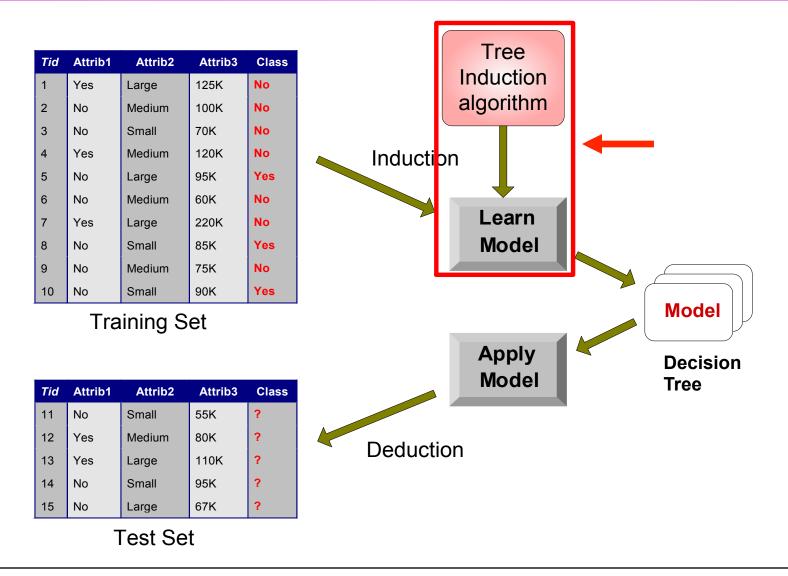








Decision Tree Classification Task



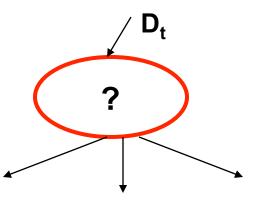
Decision Tree Induction

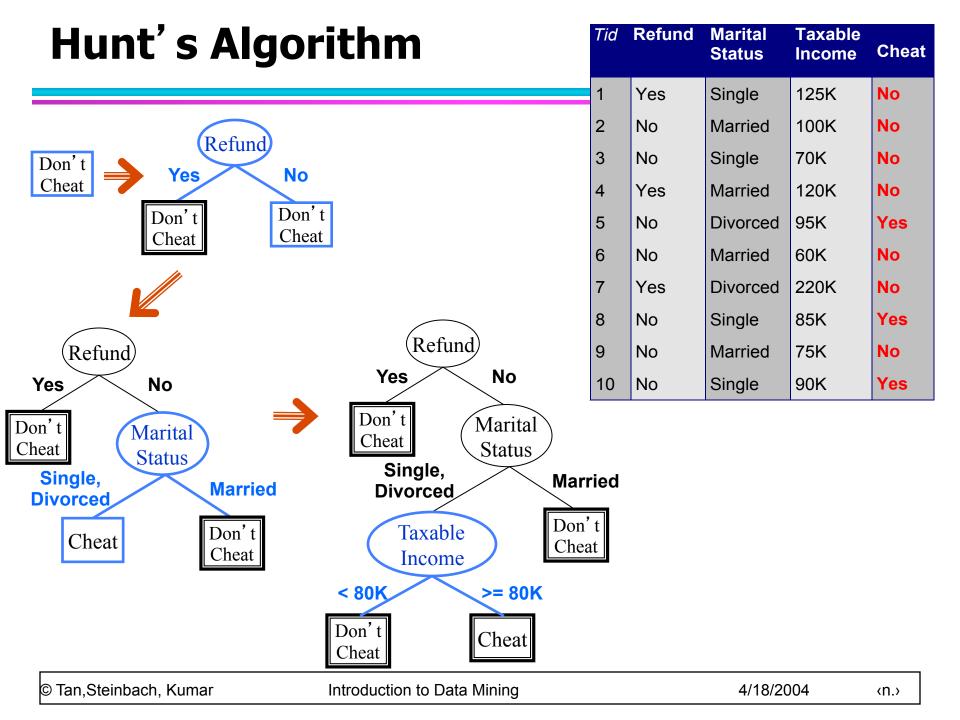
- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to **split** the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes





Tree Induction

Greedy strategy.

 Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Tree Induction

Greedy strategy.

 Split the records based on an attribute test that optimizes certain criterion.

Issues

Determine how to split the records

How to specify the attribute test condition?

How to determine the best split?

Determine when to stop splitting

How to Specify Test Condition?

Depends on attribute types

- Nominal
- Ordinal
- Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

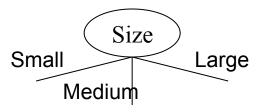
Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

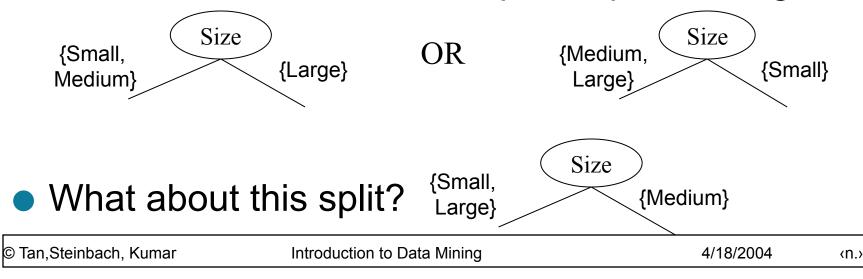
 Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.



Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

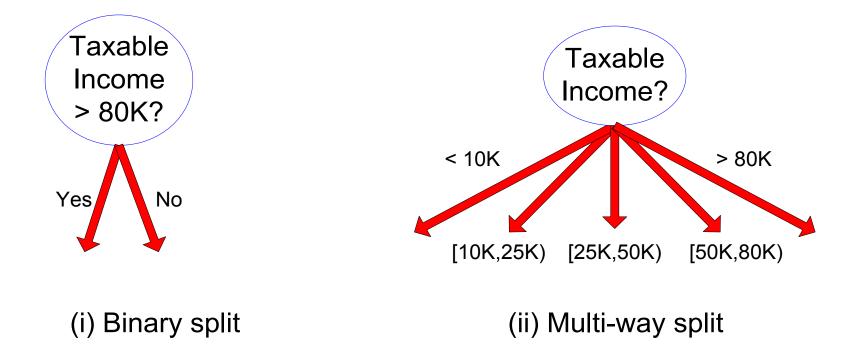


Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes



Tree Induction

Greedy strategy.

 Split the records based on an attribute test that optimizes certain criterion.

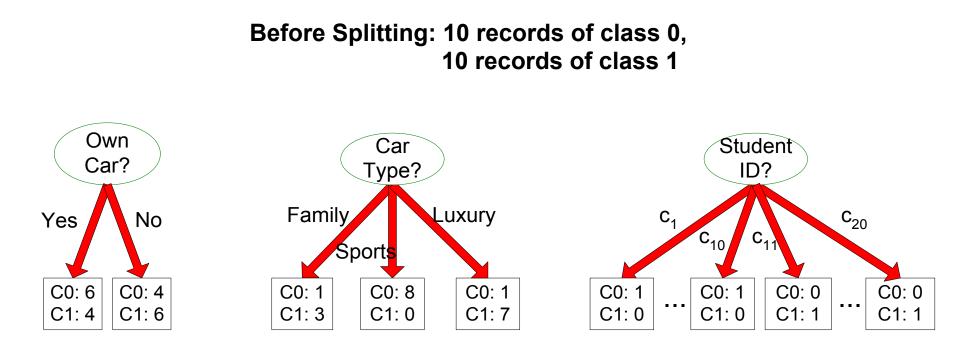
Issues

Determine how to split the records
How to specify the attribute test condition?

How to determine the best split?

Determine when to stop splitting

How to determine the Best Split



Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

Non-homogeneous, High degree of impurity

Homogeneous, Low degree of impurity

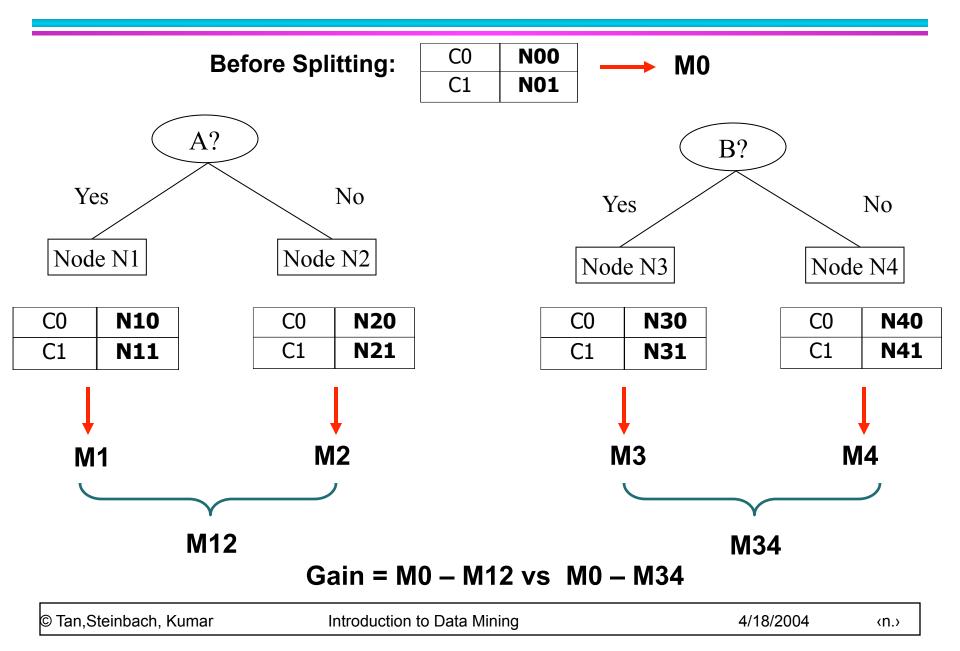
Measures of Node Impurity

Gini Index

Entropy

Misclassification error

How to Find the Best Split



Measure of Impurity: GINI

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^2$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Gini = 1 - $P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - (1/6)² - (5/6)² = 0.278

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Gini = 1 - (2/6)² - (4/6)² = 0.444

Splitting Based on GINI

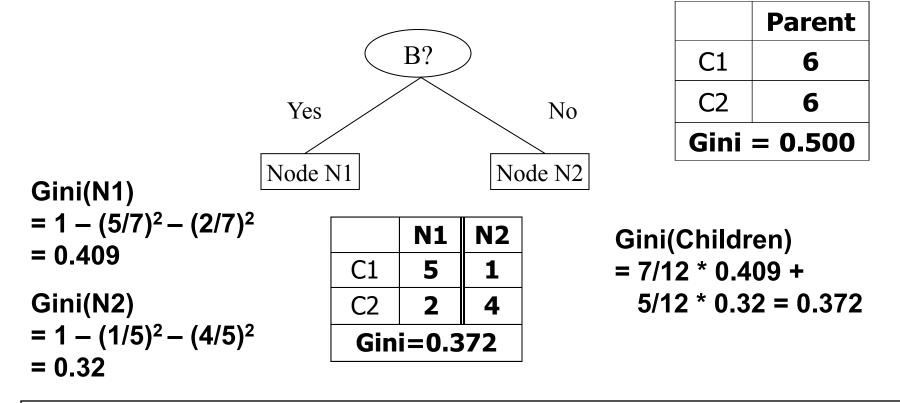
- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

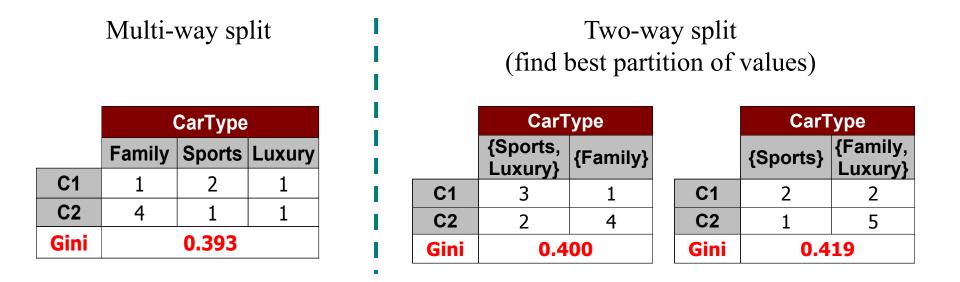
Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.



Categorical Attributes: Computing Gini Index

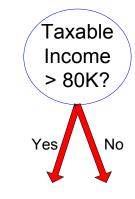
- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No)	N	0	Ye	S	Ye	S	Ye	s	N	0	N	0	N	0		No	
		Taxable Income																					
Sorted Values			60		70		7	5	85	5	9()	9	5	10	00	12	20	12	25		220	
Split Positions	5	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	72	23	0
opinti oonioin		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	575	0.3	43	0.4	17	0.4	00	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	00	0.4	20

Tree Induction

Greedy strategy.

 Split the records based on an attribute test that optimizes certain criterion.

Issues

Determine how to split the records

- How to specify the attribute test condition?
- How to determine the best split?
- Determine when to stop splitting

<n.>

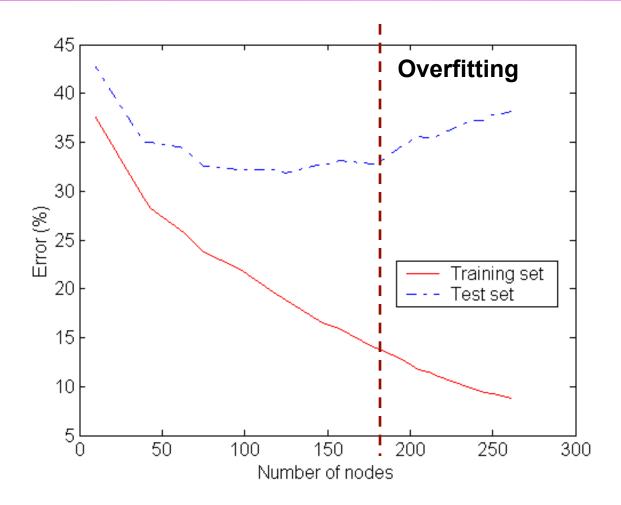
Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination (to be discussed later)

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

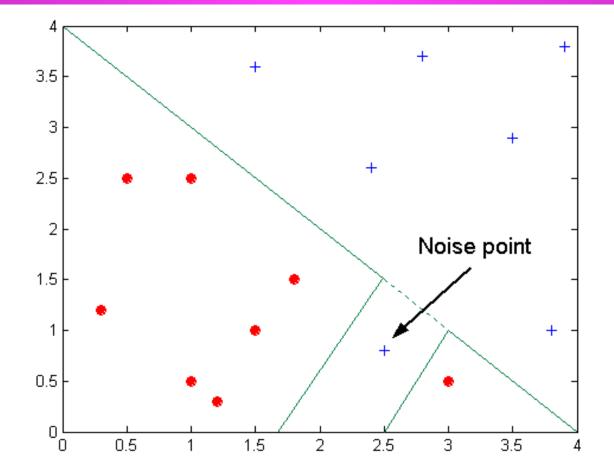
Underfitting and Overfitting



Underfitting: when model is too simple, both training and test errors are large

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004 (n.
------------------------	-----------------------------	---------------

Overfitting due to Noise

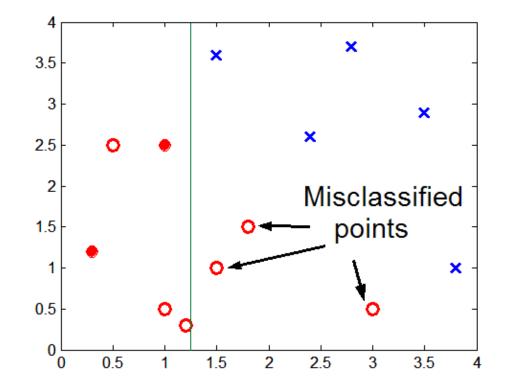


Decision boundary is distorted by noise point

C	Tan,Steinbach,	Kumar
---	----------------	-------

Introduction to Data Mining

Overfitting due to Insufficient Examples



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

How to Address Overfitting

• Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - \blacklozenge Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Model Evaluation

Metrics for Performance Evaluation How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Metrics for Performance Evaluation

- How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Metrics for Performance Evaluation

Focus on the predictive capability of a model

 Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	b					
CLASS	Class=No	С	d				

a: TP (true positive)

b: FN (false negative)

: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	c (FP)	d (TN)			

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

	PREDICTED CLASS					
	C(i j)	Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)			
	Class=No	C(Yes No)	C(No No)			

C(i|j): Cost of misclassifying class j example as class i

<n.>

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i j)	+	-			
	+	-1	100			
	-	1	0			

Model M₂

ACTUAL

CLASS

Model M ₁	PREDICTED CLASS					
		+	-			
ACTUAL CLASS	+	150	40			
	-	60	250			

Accuracy = 80% Cost = 3910 Accuracy = 90% Cost = 4255

+

-

PREDICTED CLASS

+

250

5

45

200

Cost vs Accuracy

Count	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	а	b				
	Class=No	С	d				

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy = (a + d)/N

Cost	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	р	q				
	Class=No	q	р				

Cost-Sensitive Measures

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

Metrics for Performance Evaluation How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement