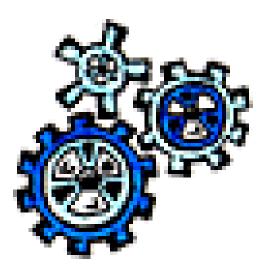
Association rules and market basket analysis



Association rules - module outline

What are association rules (AR) and what are they used for:

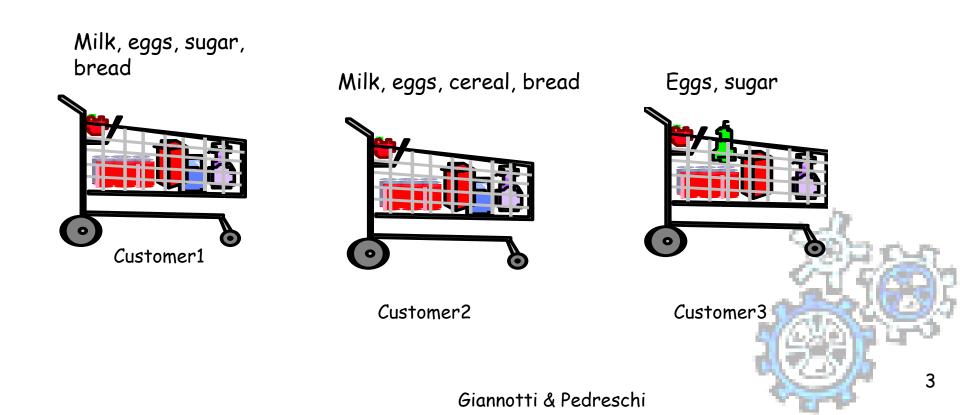
- The paradigmatic application: Market Basket Analysis
- The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR

Market Basket Analysis: the context

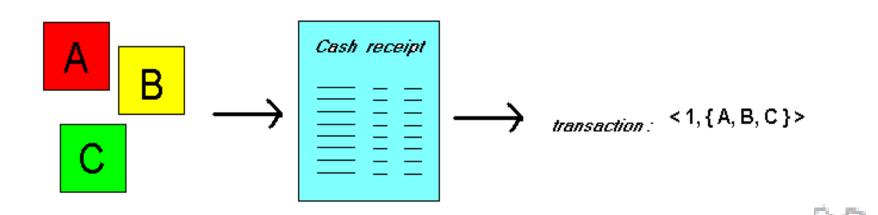
Customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"



Market Basket Analysis: the context

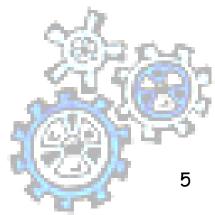
Given: a database of customer transactions, where each transaction is a set of items

Find groups of items which are frequently purchased together



Goal of MBA

- Extract information on purchasing behavior
- Actionable information: can suggest
 - new store layouts
 - new product assortments
 - which products to put on promotion
- MBA applicable whenever a customer purchases multiple things in proximity
 - credit cards
 - services of telecommunication companies
 - banking services
 - medical treatments



MBA: applicable to many other contexts

Telecommunication:

Each customer is a transaction containing the set of customer's phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed event (rains, wind, etc.)

Etc.

Association Rules

- Express how product/services relate to each other, and tend to group together
- "if a customer purchases three-way calling, then will also purchase call-waiting"
- simple to understand
- actionable information: bundle three-way calling and call-waiting in a single package
- Examples.
 - **Rule form:** "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") and takes(x, "DB") → grade(x, "A") [1%, 75%]

Useful, trivial, unexplicable

- Useful: "On Thursdays, grocery store consumers often purchase diapers and beer together".
- Trivial: "Customers who purchase maintenance agreements are very likely to purchase large appliances".
- Unexplicable: "When a new hardaware store opens, one of the most sold items is toilet rings."

Association Rules Road Map

Single dimension vs. multiple dimensional AR

- E.g., association on items bought vs. linking on different attributes.
- Intra-Attribute vs. Inter-Attribute

Qualitative vs. quantitative AR

Association on categorical vs. numerical attributes

Simple vs. constraint-based AR

E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Single level vs. multiple-level AR

E.g., what brands of beers are associated with what brands of diapers?

Association vs. correlation analysis.

Association does not necessarily imply correlation.

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

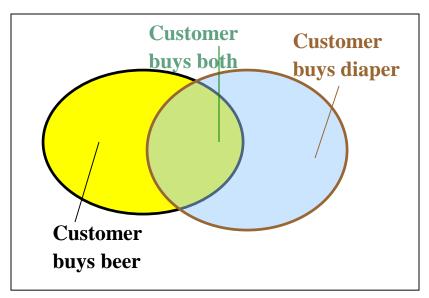
 $\{Diaper\} \rightarrow \{Beer\},\$ $\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\$ $\{Beer, Bread\} \rightarrow \{Milk\},\$

Implication means co-occurrence, not causality!

10

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F



Itemset X = $\{x_1, ..., x_k\}$

Find all the rules $X \rightarrow Y$ with minimum support and confidence

- support, s, probability that a transaction contains X U Y
- confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

11

 $A \rightarrow D \ (60\%, 100\%)$ $D \rightarrow A \ (60\%, 75\%)$

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - \checkmark An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. σ({Milk, Bread, Diaper}) = 2
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y

Confidence (c)

 Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

contain $\begin{cases} \text{Example:} \\ \{\text{Milk, Diaper}\} \Rightarrow \text{Beer} \\ \Rightarrow \text{ Beer} \\ \Rightarrow \text{ S} = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4 \\ c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper, Beer})} = \frac{2}{5} = 0.67 \\ \end{cases}$ Giannotti & Pedreschi

Association rules - module outline

- What are association rules (AR) and what are they used for:
 - The paradigmatic application: Market Basket Analysis
 - The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR

Association Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having

- support ≥ minsup threshold
- confidence ≥ minconf threshold

Brute-force approach:

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds

 \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

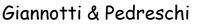
- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support
 minsup
- 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive



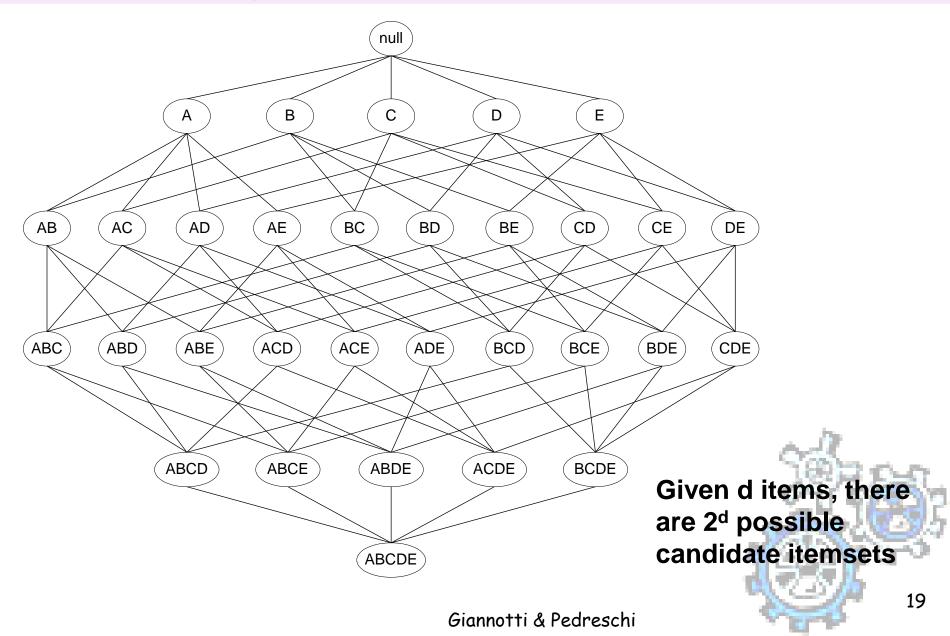
17

Basic Apriori Algorithm

Problem Decomposition

- ① Find the *frequent itemsets*: the sets of items that satisfy the support constraint
 - A subset of a frequent itemset is also a frequent itemset, i.e., if {A,B} is a frequent itemset, both {A} and {B} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- ② Use the frequent itemsets to generate association rules.

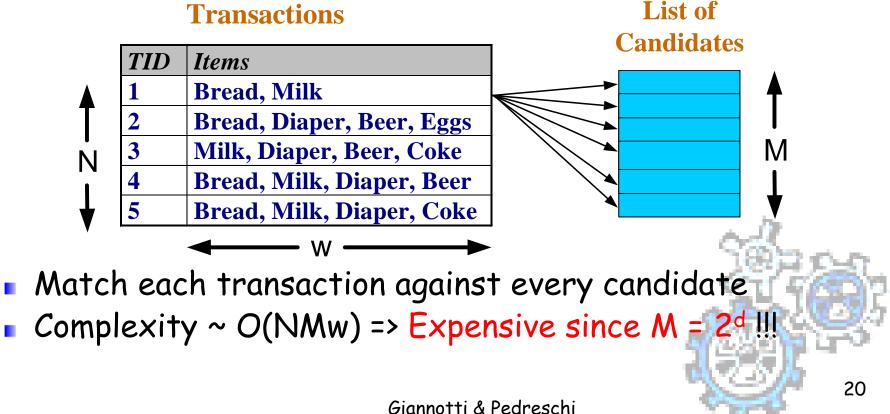
Frequent Itemset Generation



Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database



Frequent Itemset Generation Strategies

Reduce the number of candidates (M)

- Complete search: M=2^d
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms

Reduce the number of comparisons (NM)

- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Giannotti & Pedreschi

21

Reducing Number of Candidates

Apriori principle:

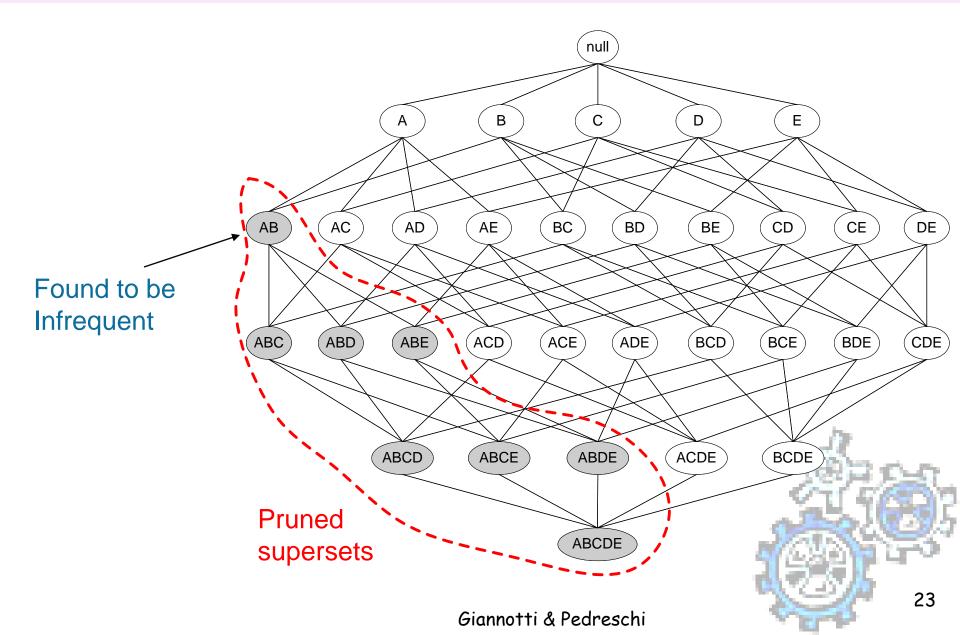
If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

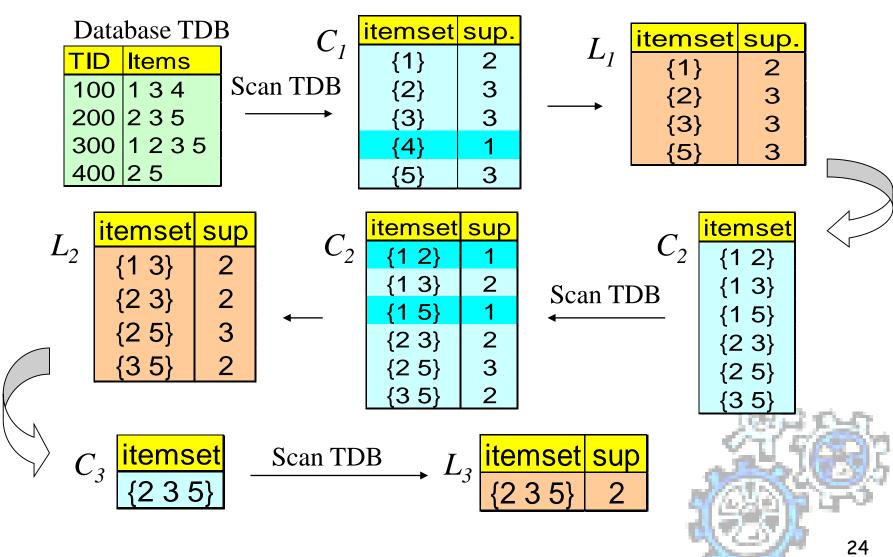
$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle



Apriori Execution Example (min_sup = 2)



The Apriori Algorithm

Join Step: C_k is generated by joining L_{k-1} with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k + +) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

Example of Generating Candidates

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L_3
- C₄={abcd}

Factors Affecting Complexity

Choice of minimum support threshold

- Iowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets

Dimensionality (number of items) of the data set

- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase

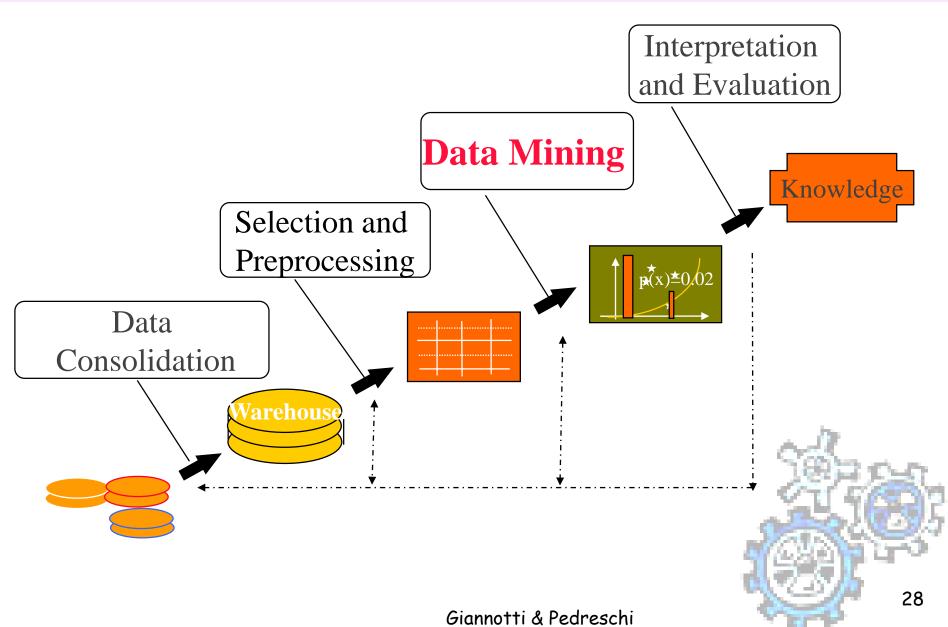
Size of database

since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Average transaction width

- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

The KDD process



Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated
- Frequent itemsets satisfy minimum support threshold
- Strong rules are those that satisfy minimum confidence threshold

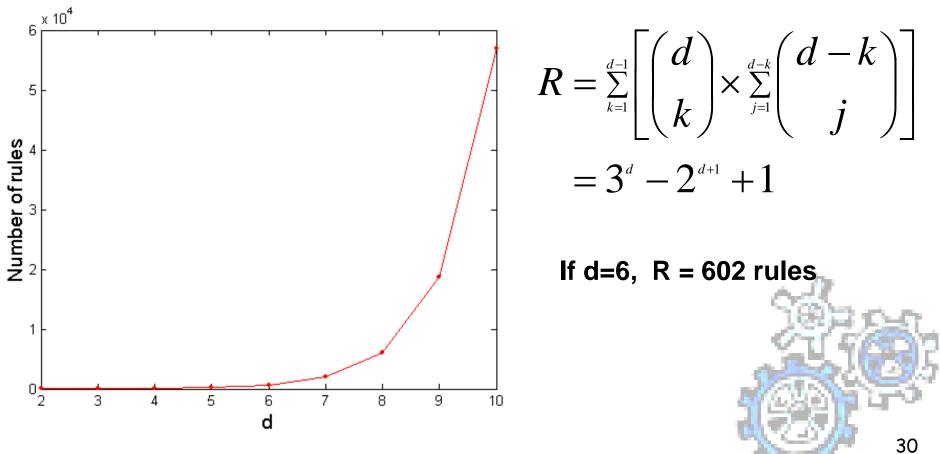
$$confidence(A ==> B) = \Pr(B \mid A) = \frac{support(A \cup B)}{support(A)}$$

For each frequent itemset, f, generate all non-empty subsets of f
For every non-empty subset s of f do
 if support(f)/support(s) ≥ min_confidence then
 output rule s ==> (f-s)
end

Computational Complexity

Given d unique items:

- Total number of itemsets = 2^d
- Total number of possible association rules:



Giannotti & Pedreschi

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L - f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \to A$,
$A \rightarrow BCD$,	$B \rightarrow ACD$,	$\mathcal{C} \rightarrow ABD$,	D ightarrow ABC
$AB \rightarrow CD$,	AC ightarrow BD,	$AD \to BC$,	$BC \to AD$,
$BD \to AC$,	$CD \rightarrow AB$,		

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

 But confidence of rules generated from the same itemset has an anti-monotone property

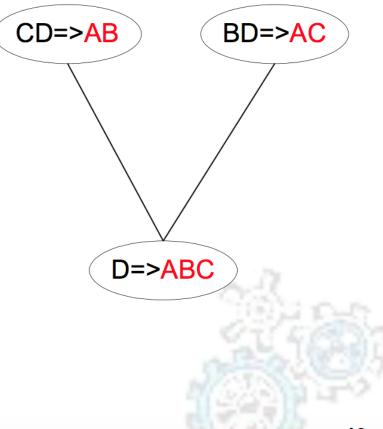
$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Reg. Ass.

Rule Generation for Apriori Algorithm

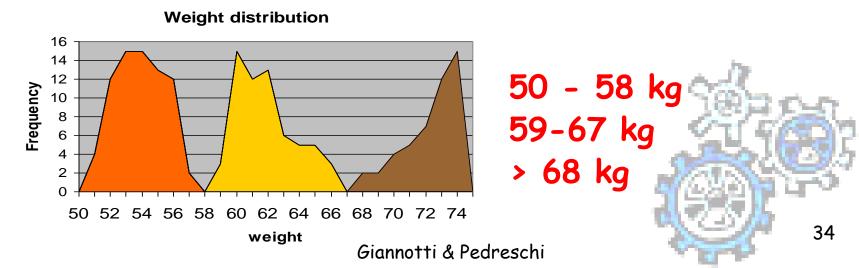
- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence



Reg. Ass.

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- 3. Interval size determined by analyzing data, studying the distribution or using clustering



Discretization of quantitative attributes

- 1. Quantitative attributes are statically discretized by using predefined concept hierarchies:
 - elementary use of background knowledge

Loose interaction between Apriori and discretizer

- 2. Quantitative attributes are dynamically discretized
 - into "bins" based on the distribution of the data.
 - considering the distance between data points.

Tighter interaction between Apriori and discretizer

Reasoning with AR

Significance:

Example: <1, {a, b}> <2, {a} > <3, {a, b, c}> <4, {b, d}>

{b} \Rightarrow {a} has confidence (66%), but is not significant as support({a}) = 75%.

Beyond Support and Confidence

Example 1: (Aggarwal & Yu, PODS98)

	coffee	not coffee	sum(row)
tea	20	5	25
not tea	70	5	75
sum(col.)	90	10	100

- {tea} => {coffee} has high support (20%) and confidence (80%)
- However, a priori probability that a customer buys coffee is 90%
 - A customer who is known to buy tea is less likely to buy coffee (by 10%)
 - There is a negative correlation between buying tea and buying coffee
 - {~tea} => {coffee} has higher confidence(93%)

Correlation and Interest

- Two events are independent if P(A A B) = P(A)*P(B), otherwise are correlated.
- Interest = $P(A \land B) / P(B)*P(A)$
- Interest expresses measure of correlation
 - \blacksquare = 1 \Rightarrow A and B are independent events
 - less than $1 \Rightarrow A$ and B negatively correlated,
 - greater than $1 \Rightarrow A$ and B positively correlated.
 - In our example, I(buy tea buy coffee)=0.89 i.e. they are negatively correlated.

Computing Interestingness Measure

■ Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	У	γ	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of X and } \overline{Y} \\ f_{01} : \text{ support of } \overline{X} \text{ and } \overline{Y} \\ f_{00} : \text{ support of X and } Y \end{array}$

 Used to define various measures
 support, confidence, lift, Gini, J-measure, etc.

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Giannotti & Pedreschi

40

Example: Lift/Interest

	Coffe e	Coffe e	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Giannotti & Pedreschi

41

Drawback of Lift & Interest

	У	γ	
X	10	0	10
X	0	90	90
	10	90	100

	У	V	
X	90	0	90
Ā	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If P(X,Y)=P(X)P(Y) => Lift = 1

Association rules - module outline

- What are association rules (AR) and what are they used for:
 - The paradigmatic application: Market Basket Analysis
 - The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR

Multidimensional AR

Associations between values of different attributes :

CID	nationality	age	income
1	Italian	50	low
2	French	40	high
3	French	30	high
4	Italian	50	medium
5	Italian	45	high
6	French	35	high

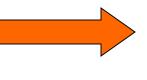
RULES:

nationality = French \Rightarrow income = high [50%, 100%]income = high \Rightarrow nationality = French [50%, 75%]age = 50 \Rightarrow nationality = Italian [33%, 100%]

Single-dimensional vs Multi-dimensional AR

Multi-dimensional

<1, Italian, 50, low> <2, French, 45, high>



Single-dimensional

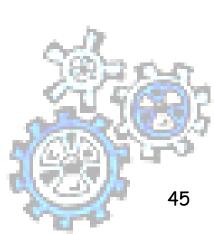
<1, {nat/Ita, age/50, inc/low}><2, {nat/Fre, age/45, inc/high}>

Schema: <ID, a?, b?, c?, d?>

<1, yes, yes, no, no>

<2, yes, no, yes, no>

<1, {a, b}> <2, {a, c}>



Quantitative Attributes

Quantitative attributes (e.g. age, income)
 Categorical attributes (e.g. color of car)

CID	height	weight	income
1	168	75,4	30,5
2	175	75,4 80,0	20,3
3	174	70,3 65,2	25,8
4	170	65,2	30,5 20,3 25,8 27,0

Problem: too many distinct values Solution: transform quantitative attributes in categorical ones via discretization.

Quantitative Association Rules

CID	Age	Married	NumCars
1	23	No	1
2	25	Yes	1
3	29	No	0
4	34	Yes	2
5	38	Yes	2

[Age: 30..39] and [Married: Yes] \Rightarrow [NumCars:2]

support = 40%
confidence = 100%

47

Discretization of quantitative attributes

Solution: each value is replaced by the interval to which it belongs.

height: 0-150cm, 151-170cm, 171-180cm, >180cm weight: 0-40kg, 41-60kg, 60-80kg, >80kg income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).