Atherosclerosis prevention study

2nd Department of Medicine, 1st Faculty of Medicine of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC)

Atherosclerosis prevention study:

- The STULONG 1 data set is a real database that keeps information about the study of the development of atherosclerosis risk factors in a population of middle aged men.
- Used for Discovery Challenge at PKDD 00-02-03-04

Atherosclerosis prevention study:

- Study on 1400 middle-aged men at Czech hospitals
 - Measurements concern development of cardiovascular disease and other health data in a series of exams
- The aim of this analysis is to look for associations between medical characteristics of patients and death causes.
- Four tables
 - Entry and subsequent exams, questionnaire responses, deaths

The input data

Data from Entry and Exams							
General characteristics	Examinations	habits					
Marital status	Chest pain	Alcohol					
Transport to a job	Breathlesness	Liquors					
Physical activity in a job	Cholesterol	Beer 10					
Activity after a job	Urine	Beer 12					
Education	Subscapular	Wine					
Responsibility	Triceps	Smoking					
Age		Former smoker					
Weight		Duration of smoking					
Height		Tea					
		Sugar					
		Coffee					

The input data

DEATH CAUSE	PATIENTS	%
myocardial infarction	80	20.6
coronary heart disease	33	8.5
stroke	30	7.7
other causes	79	20.3
sudden death	23	5.9
unknown	8	2.0
tumorous disease	114	29.3
general atherosclerosis	22	5.7
TOTAL	389	100.0

Data selection

- When joining "Entry" and "Death" tables we implicitly create a new attribute "Cause of death", which is set to "alive" for subjects present in the "Entry" table but not in the "Death" table.
- We have only 389 subjects in death table.

The prepared data

Patient	General characteristics		Examinations		Habits		Cause of
	Activity after work	Education	Chest pain		Alcohol		death
1	moderate activity	university	not present		no		Stroke
2	great activity		not ischaemic		occasionally		myocardial infarction
3	he mainly sits		other pains		regularly		tumorous disease
							alive
389	he mainly sits		other pains		regularly		tumorous disease

Descriptive Analysis/ Subgroup Discovery / Association Rules

Are there strong relations concerning death cause?

General characteristics $(?) \Rightarrow Death cause (?)$

Examinations $(?) \Rightarrow Death cause (?)$

Habits $(?) \Rightarrow$ Death cause (?)

Combinations $(?) \Rightarrow Death cause (?)$

Example of extracted rules

- Education(university) & Height<176-180>
 ⇒Death cause (tumouros disease), 16;
 0.62
- It means that on tumorous disease have died 16, i.e. 62% of patients with university education and with height 176-180 cm.

Example of extracted rules

- Physical activity in work(he mainly sits) & Height<176-180> ⇒ Death cause (tumouros disease), 24; 0.52
- It means that on tumorous disease have died 24 i.e. 52% of patients that mainly sit in the work and whose height is 176-180 cm.

Example of extracted rules

- Education(university) & Height<176-180>
 ⇒Death cause (tumouros disease),
 16; 0.62; +1.1;
- the relative frequency of patients who died on tumorous disease among patients with university education and with height 176-180 cm is 110 per cent higher than the relative frequency of patients who died on tumorous disease among all the 389 observed patients

Conclusions

- Association rule mining
 - probably the most significant contribution from the database community to KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: spatial data, multimedia data, time series data, etc.

Conclusion (2)

- competition of supermarket retailers.
- Knowledge of customers MBA is a key factor of success in their purchasing behavior brings potentially huge added value.

Which tools for market basket analysis?

Association rule are needed but insufficient

- Market analysts ask for business rules:
 - Is supermarket assortment adequate for the company's target class of customers?
 - Is a promotional campaign effective in establishing a desired purchasing habit?

Business rules: temporal reasoning on AR

- Which rules are established by a promotion?How do rules change along time?

The KDD process

