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Preliminaries

Classification and Clustering
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Classification problem

 What we have
* A set of objects, each of them
described by some features

* people described by age, gender,
height, etc.

* bank transactions described by type,
amount, time, etc.

e What we want to do

* Associate the objects of a set to a
class, taken from a predefined list 15k€

* @’'good customer” vs. @‘churner”
* @'normal transaction” vs.@“fraudulent” '(Ee"“'gel)

. . . 50y 60y (e-g-Age
» @'low risk patient” vs.@"risky” v o

(e.g. Income)
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Classification problem

* What we know
* No domain knowledge or theory

* Only examples: Training Set
* Subset of labelled objects

e What we can do

e Learn from examples

 Make inferences about the other
objects




Classity by similarity

* K-Nearest Neighbors
* Decide label based on K most similar examples




Build a model

* Example 1: linear separation line




Build a model

* Example 2: Support Vector Machine (linear)




Build a model

* Example 3: Non-linear separation line




Build a model

* Decision Trees

Income >
15k€ ?
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Clustering

e Classification starts from predefined labels and
some examples to learn




Clustering

* What if no labels are known?
* We might lack examples
* Labels might actually not exist at all...




Clustering

* Objective: find structure in the data

e Group objects into clusters of similar entities




Clustering: K-means (family)

* Find k subgroups that form compact and well-

separated clusters
\Cluster compactness

K=3

Cluster separat'ovn\A/.




Clustering: K-means (family)

e Qutput 1: a partitioning of the initial set of objects

K=3




Clustering: K-means (family)

e Output 2: K representative objects (centroids)

* Centroid = average profile of the objects in the cluster

@

* Avg.age

* Avg. weight

* Avg.income

* Avg..nchildren




Clustering: hierarchical approaches

* Sometimes we can have (or desire) multiple levels
of aggregation




Clustering: hierarchical approaches

* Sometimes we can have (or desire) multiple levels
of aggregation

n
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The many notions of «cluster»
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What is Cluster Analysis?

e Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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Applications of Cluster Analysis

Discovered Clusters Industry Group

e Understanding

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

- G ro U p re I ate d d O C U m e n tS Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down, TeChnOIOgyl -DOWN

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,

for browsing, group genes SunDOWN

Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
1 ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,

a n d p rOte I n S th at h ave 2 Computer-Assoc-DOWN, Circuit-City-DOWN,

Compag-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,

S i m i | a r fu n Ct i O n a I ity y O r Motorola-DOWN, Microsoft-DOWN,Scientific-Atl-DOWN
group stocks with similar VBN A-Corp DOWN Morgan-Sans - DOWN R p—
price fluctuations

Technology2-DOWN

)

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 0il-UP
Schlumberger-UP

=

e Summarization

— Reduce the size of large
data sets

Clustering precipitation
in Australia
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What is not Cluster Analysis?

e Simple segmentation

— Dividing students into different registration groups
alphabetically, by last name

e Results of a query

— Groupings are a result of an external specification
— Clustering is a grouping of objects based on the data

e Supervised classification
— Have class label information

e Association Analysis
— Local vs. global connections
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Notion of a Cluster can be Ambiguous
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Types of Clusterings

e A clustering is a set of clusters

e Important distinction between hierarchical and
partitional sets of clusters

e Partitional Clustering

— A division of data objects into non-overlapping subsets
(clusters) such that each data object is in exactly one subset

e Hierarchical clustering
— A set of nested clusters organized as a hierarchical tree

02/14/2018 Introduction to Data Mining, 2" Edition
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Partitional Clustering

Original Points A Partitional Clustering
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Hierarchical Clustering

B

pl p2 p3pd

Traditional Hierarchical Clustering Traditional Dendrogram
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Other Distinctions Between Sets of Clusters

e EXxclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.

— Can represent multiple classes or ‘border’ points

e Fuzzy versus non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

— Weights must sum to 1
— Probabilistic clustering has similar characteristics

e Partial versus complete
— In some cases, we only want to cluster some of the data

o Heterogeneous Versus homogeneous
— Clusters of widely different sizes, shapes, and densities
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Types of Clusters

e Well-separated clusters

e Center-based clusters

e Contiguous clusters

e Density-based clusters

e Property or Conceptual

e Described by an Objective Function

02/14/2018 Introduction to Data Mining, 2" Edition
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Types of Clusters: Well-Separated

e Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: Center-Based

e Center-based

— Acluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

— The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most “representative”
point of a cluster

4 center-based clusters
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Types of Clusters: Contiguity-Based

e Contiguous Cluster (Nearest neighbor or
Transitive)

— Each point is closer to at least one point in its cluster than to
any point in another cluster.

— Graph based clustering

e This approach can have trouble when noise is present since a
small bridge of points can merge two distinct clusters

8 contiguous clusters

02/14/2018 Introduction to Data Mining, 2" Edition
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Types of Clusters: Density-Based

e Density-based

— A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters
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Types of Clusters: Objective Function

e Clusters Defined by an Objective Function

— Finds clusters that minimize or maximize an objective
function.
— Enumerate all possible ways of dividing the points into

clusters and evaluate the "goodness' of each potential
set of clusters by using the given objective function.

(NP Hard)

— Can have global or local objectives.
+ Hierarchical clustering algorithms typically have local objectives
+ Partitional algorithms typically have global objectives
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Characteristics of the Input Data Are Important

e Type of proximity or density measure
— Central to clustering
— Depends on data and application

e Data characteristics that affect proximity and/or density are

— Dimensionality
¢ Sparseness

— Attribute type

— Special relationships in the data
¢ For example, autocorrelation

— Distribution of the data

e Noise and Oultliers
— Often interfere with the operation of the clustering algorithm
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Three fundamental clustering algorithms
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Clustering Algorithms

e K-means and its variants
e Hierarchical clustering

e Density-based clustering

02/14/2018 Introduction to Data Mining, 2" Edition
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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

e The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change

02/14/2018 Introduction to Data Mining, 2" Edition 36



Example of K-means Clustering
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Example of K-means Clustering
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Example of K-means Clustering

Iteration 1
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K-means Clustering — Details

e |Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

e The centroid is (typically) the mean of the points in the
cluster.

e ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

e K-means will converge for common similarity measures
mentioned above.

e Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

e ComplexityisO(n*K*I1*d)

— n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

e Most common measure is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster

— To get SSE, we square these errors and sum them.
K

SSE :Z Zdist 2(ml.,x) a
i=1 xeC, =

e X is a data point in cluster C, and m, is the representative
point for cluster Ci

can show that mi corresponds to the center (mean) of

0.0

0.5

the cluster S T A—

e Given two sets of clusters, we prefer the one with the o
smallest error

e One easy way to reduce SSE is to increase K, the number of
clusters

e A good clustering with smaller K can have a lower SSE than
a poor clustering with higher K

02/14/2018 Introduction to Data Mining, 2" Edition
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Two different K-means Clusterings
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Limitations of K-means

e K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

e K-means has problems when the data contains
outliers.

02/14/2018 Introduction to Data Mining, 2" Edition
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Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

e K-means can yield empty clusters

Cluster

02/14/2018 Introduction to Data Mining, 2" Edition
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Handling Empty Clusters

e Basic K-means algorithm can yield empty
clusters

e Several strategies

= Choose a point and assign it to the cluster
+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

e If there are several empty clusters, the above can
be repeated several times.

02/14/2018 Introduction to Data Mining, 2" Edition 51



Pre-processing and Post-processing

e Pre-processing
— Normalize the data
— Eliminate outliers

e Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

e If there are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Inf K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

02/14/2018 Introduction to Data Mining, 2" Edition 58



10 Clusters Example

Iteration 1 Iteration 2
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example

Iteration 1 Iteration 2
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

e Sample and use hierarchical clustering to determine
initial centroids

e Select more than k initial centroids and then select among
these initial centroids

— Select most widely separated
e Postprocessing

e Generate a larger number of clusters and then perform a
hierarchical clustering

e Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

e |n the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

e An alternative is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Bisecting K-means

e Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a
hierarchical clustering

. Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Bisecting K-means Example
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