Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining by Tan, Steinbach, Kumar

Association Rule Mining

● Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

Example of Association Rules

 ${D}[aper] \rightarrow {B}er$, ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk}$,

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

● **Itemset**

- A collection of one or more items
	- ◆ Example: {Milk, Bread, Diaper}
- k-itemset
	- \triangle An itemset that contains k items
- **Support count (**σ**)**
	- Frequency of occurrence of an itemset
	- E.g. σ({Milk, Bread,Diaper}) = 2

Support

- Fraction of transactions that contain an itemset
- $-$ E.g. s({Milk, Bread, Diaper}) = 2/5

● **Frequent Itemset**

– An itemset whose support is greater than or equal to a *minsup* threshold

Definition: Association Rule

● **Association Rule**

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: ${Milk, Diaper} \rightarrow {Beer}$

● **Rule Evaluation Metrics**

- Support (s)
	- ◆ Fraction of transactions that contain both X and Y
- Confidence (c)
	- Measures how often items in Y appear in transactions that contain X

Example: {Milk,Diaper}⇒ Beer

$$
s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4
$$

$$
c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67
$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
	- support ≥ *minsup* threshold
	- confidence ≥ *minconf* threshold
- Brute-force approach:
	- List all possible association rules
	- Compute the support and confidence for each rule
	- Prune rules that fail the *minsup* and *minconf* thresholds
	- ⇒ Computationally prohibitive!

Mining Association Rules

Example of Rules:

 ${Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)$ ${Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)$ ${Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)$ ${Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)$ ${D}[aper] \rightarrow {M}$ ilk, Beer} (s=0.4, c=0.5) ${Milk} \rightarrow {Diaper, Beer}$ (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
	- **Frequent Itemset Generation**
		- Generate all itemsets whose support \geq minsup
	- Rule Generation
		- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- **Frequent itemset generation is still** computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
	- $-$ Each itemset in the lattice is a candidate frequent itemset
	- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- $-$ Complexity \sim O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
	- $-$ Total number of itemsets = 2^d
	- Total number of possible association rules:

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
	- $-$ Complete search: M=2^d
	- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
	- Reduce size of N as the size of itemset increases
	- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
	- Use efficient data structures to store the candidates or transactions
	- No need to match every candidate against every transaction

Reducing Number of Candidates

● Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Apriori Algorithm

● Method:

- $-$ Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
	- ◆ Generate length (k+1) candidate itemsets from length k frequent itemsets
	- Prune candidate itemsets containing subsets of length k that are infrequent
	- Count the support of each candidate by scanning the DB
	- ◆ Eliminate candidates that are infrequent, leaving only those that are frequent

Reducing Number of Comparisons

● Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure

 \bullet Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- **Hash function**
- **Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)**

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

© Tan, Steinbach, Kumar **Introduction to Data Mining** 1995 124 and 4/18/2004 24

Factors Affecting Complexity

- Choice of minimum support threshold
	- lowering support threshold results in more frequent itemsets
	- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
	- more space is needed to store support count of each item
	- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
	- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
	- transaction width increases with denser data sets
	- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

● Some itemsets are redundant because they have identical support as their supersets

 \bullet Number of frequent itemsets $=3\times\Sigma$

 $\sum_{r=1}^{8}$ $\frac{1}{r}$ $\overline{}$ \overline{a} \setminus $\big($ $= 3 \times \sum_{10}^{10}$ 1 10 $3\times\sum_{k=1}^{10} k_k$

Need a compact representation

Maximal Frequent Itemset

Closed Itemset

● An itemset is closed if none of its immediate supersets has the same support as the itemset

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

- Traversal of Itemset Lattice
	- General-to-specific vs Specific-to-general

© Tan,Steinbach, Kumar **Introduction to Data Mining** 1995 12:4/18/2004 33

- Traversal of Itemset Lattice
	- Breadth-first vs Depth-first

(a) Breadth first (b) Depth first

- Representation of Database
	- horizontal vs vertical data layout

Horizontal Data Layout

Vertical Data Layout

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
FP-tree construction

FP-Tree Construction

FP-growth

Conditional Pattern base for D: P = {(A:1,B:1,C:1), (A:1,B:1), (A:1,C:1), (A:1), (B:1,C:1)} Recursively apply FPgrowth on P Frequent Itemsets found (with sup > 1): AD, BD, CD, ACD, BCD

Tree Projection

Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
	- Itemset for node P
	- List of possible lexicographic extensions of $P: E(P)$
	- Pointer to projected database of its ancestor node
	- Bitvector containing information about which transactions in the projected database contain the itemset

Projected Database

Original Database:

Projected Database for node A:

For each transaction T, projected transaction at node A is T ∩ **E(A)**

ECLAT

● For each item, store a list of transaction ids (tids)

ECLAT

● Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

- 3 traversal approaches:
	- top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L - f$ satisfies the minimum confidence requirement
	- If {A,B,C,D} is a frequent itemset, candidate rules:

• If $|L| = k$, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
	- In general, confidence does not have an antimonotone property c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)
	- But confidence of rules generated from the same itemset has an anti-monotone property

$$
-
$$
 e.g., $L = \{A, B, C, D\}$:

 $c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD)$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule $D \Rightarrow ABC$
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Effect of Support Distribution

● Many real data sets have skewed support distribution

Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
	- If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
	- If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Multiple Minimum Support

- How to apply multiple minimum supports?
	- MS(i): minimum support for item i
	- $-$ e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
	- MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli)) $= 0.1\%$
	- Challenge: Support is no longer anti-monotone
		- \triangle Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
		- {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

Multiple Minimum Support

Multiple Minimum Support

Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
	- $-$ e.g.: $MS(Milk)=5\%,$ $MS(Coke)=3\%,$ MS(Broccoli)=0.1%, MS(Salmon)=0.5%
	- Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
	- $-$ L₁ : set of frequent items
	- F_1 : set of items whose support is $\geq MS(1)$ where $\mathsf{MS}(1)$ is min $_{\mathsf{i}}(\mathsf{\:MS}(\mathsf{i})$)
	- C_2 : candidate itemsets of size 2 is generated from F_1 instead of L_1

Multiple Minimum Support (Liu 1999)

● Modifications to Apriori:

- In traditional Apriori,
	- ◆ A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
	- The candidate is pruned if it contains any infrequent subsets of size k
- Pruning step has to be modified:
	- \blacktriangleright Prune only if subset contains the first item
	- ◆ e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to

minimum support)

- {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
	- Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
	- many of them are uninteresting or redundant
	- Redundant if $\{A, B, C\} \rightarrow \{D\}$ and $\{A, B\} \rightarrow \{D\}$ have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measure

Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

 Cov $\mathbf{V} \rightarrow \mathbf{V}$

f $_{11}$: support of X and Y f $_{\scriptscriptstyle{10}}$: support of \times and Y $\mathsf{f}_{\scriptscriptstyle{01}}$: support of $\mathsf{X}% _{\scriptscriptstyle{01}}$ and $\mathsf{Y}% _{\scriptscriptstyle{01}}$ f_{oo} : support of X and Y

Used to define various measures

◆ support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but $P(Coffee) = 0.9$

 \Rightarrow Although confidence is high, rule is misleading

 \Rightarrow P(Coffee|Tea) = 0.9375

Statistical Independence

- Population of 1000 students
	- 600 students know how to swim (S)
	- 700 students know how to bike (B)
	- 420 students know how to swim and bike (S,B)
	- $-$ P(S \wedge B) = 420/1000 = 0.42
	- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
	- $-$ P(S∧B) = P(S) \times P(B) => Statistical independence
	- $-$ P(S∧B) > P(S) \times P(B) => Positively correlated
	- P(S∧B) < P(S) × P(B) => Negatively correlated

Statistical-based Measures

● Measures that take into account statistical dependence

$$
Lift = \frac{P(Y|X)}{P(Y)}
$$

Interest =
$$
\frac{P(X,Y)}{P(X)P(Y)}
$$

PS = P(X,Y) - P(X)P(Y)

$$
\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}
$$

Example: Lift/Interest

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but $P(Coffee) = 0.9$

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest

$$
Lift = \frac{0.1}{(0.1)(0.1)} = 10
$$

$$
Lift = \frac{0.1}{(0.1)(0.1)} = 10
$$

$$
Lift = \frac{0.9}{(0.9)(0.9)} = 1.11
$$

Statistical independence:

If
$$
P(X,Y)=P(X)P(Y) \implies
$$
 Lift = 1

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

Properties of A Good Measure

● Piatetsky-Shapiro:

- 3 properties a good measure M must satisfy:
	- $-$ M(A,B) = 0 if A and B are statistically independent
	- $-$ M(A,B) increase monotonically with $P(A,B)$ when $P(A)$ and P(B) remain unchanged
	- $-$ M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Comparing Different Measures

10 examples of contingency tables:

Rankings of contingency tables using various measures:

© Tan,Steinbach, Kumar **Introduction to Data Mining** 10 and 4/18/2004 66

Property under Variable Permutation

Does $M(A,B) = M(B,A)$?

Symmetric measures:

◆ support, lift, collective strength, cosine, Jaccard, etc Asymmetric measures:

◆ confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation

Example: φ**-Coefficient**

 \bullet φ-coefficient is analogous to correlation coefficient for continuous variables

$$
\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}
$$
\n
$$
\phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}
$$
\n
$$
= 0.5238
$$

φ **Coefficient is the same for both tables**

© Tan, Steinbach, Kumar **Introduction to Data Mining** 10 and 4/18/2004 70

Property under Null Addition

Invariant measures:

◆ support, cosine, Jaccard, etc

Non-invariant measures:

◆ correlation, Gini, mutual information, odds ratio, etc

Different Measures have Different Properties

Support-based Pruning

- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- Study effect of support pruning on correlation of itemsets
	- Generate 10000 random contingency tables
	- Compute support and pairwise correlation for each table
	- Apply support-based pruning and examine the tables that are removed

All Itempairs

- Investigate how support-based pruning affects other measures
- Steps:
	- Generate 10000 contingency tables
	- Rank each table according to the different measures
	- Compute the pair-wise correlation between the measures

◆ Without Support Pruning (All Pairs)

- ◆ Red cells indicate correlation between the pair of measures > 0.85
- ◆ 40.14% pairs have correlation > 0.85

& Jaccard Measure

 $\cdot 0.5\% \leq$ support $\leq 50\%$

 $0.005 \Leftarrow$ support $\Leftarrow 0.500$ (61.45%)

◆ 61.45% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure:

 $\cdot 0.5\% \leq$ support $\leq 30\%$

 $0.005 \Leftarrow$ support $\Leftarrow 0.300 (76.42%)$

◆ 76.42% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

Subjective Interestingness Measure

- Objective measure:
	- Rank patterns based on statistics computed from data
	- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
	- Rank patterns according to user's interpretation
		- A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
		- A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness via Unexpectedness

● Need to model expectation of users (domain knowledge)

- $+$ Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- $\overline{+}$ **Expected Patterns**
- Unexpected Patterns

• Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Interestingness via Unexpectedness

- Web Data (Cooley et al 2001)
	- Domain knowledge in the form of site structure
	- $-$ Given an itemset F = {X₁, X₂, ..., X_k} (X_i : Web pages)
		- ◆ L: number of links connecting the pages
		- lfactor = L / ($k \times k-1$)
		- \bullet cfactor = 1 (if graph is connected), 0 (disconnected graph)
	- $-$ Structure evidence = cfactor \times Ifactor

$$
\text{- Usage evidence} = \frac{P(X_1 \cap X_2 \cap ... \cap X_k)}{P(X_1 \cup X_2 \cup ... \cup X_k)}
$$

– Use Dempster-Shafer theory to combine domain knowledge and evidence from data