Data Mining Association Rules: Advanced Concepts and Algorithms

Lecture Notes for Chapter 7

Introduction to Data Mining by Tan, Steinbach, Kumar

Continuous and Categorical Attributes

How to apply association analysis formulation to nonasymmetric binary variables?

Example of Association Rule:

 ${Number of Pages \in [5,10) \wedge (Browser=Mozilla)} \rightarrow {Buy = No}$

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attributevalue pair
	- Example: replace Browser Type attribute with
		- ◆ Browser Type = Internet Explorer
		- \triangle Browser Type = Mozilla
		- \triangle Browser Type = Mozilla

Handling Categorical Attributes

● Potential Issues

- What if attribute has many possible values
	- ◆ Example: attribute country has more than 200 possible values
	- Many of the attribute values may have very low support
		- Potential solution: Aggregate the low-support attribute values
- What if distribution of attribute values is highly skewed
	- Example: 95% of the visitors have Buy = No
	- Most of the items will be associated with (Buy=No) item
		- Potential solution: drop the highly frequent items

Handling Continuous Attributes

• Different kinds of rules:

- $-$ Age∈ [21,35) ∧ Salary∈ [70k,120k) \rightarrow Buy
- Salary∈[70k,120k) ∧ Buy → Age: µ=28, σ=4

● Different methods:

- Discretization-based
- Statistics-based
- Non-discretization based
	- ◆ minApriori

Handling Continuous Attributes

● Size of the discretized intervals affect support & confidence

 ${Refund = No, (Income = $51,250)} \rightarrow {Check = No}$

 ${Refund = No, (60K < Incomplement: 80K)} \rightarrow {Check = No}$

 ${Refund = No, (OK \le Income \le 1B)} \rightarrow {Check = No}$

– If intervals too small

• may not have enough support

– If intervals too large

• may not have enough confidence

● Potential solution: use all possible intervals

Discretization Issues

● Execution time

– If intervals contain n values, there are on average O(n²) possible ranges

● Too many rules

 ${Refund = No, (Income = $51,250)} \rightarrow {Check = No}$

 ${Refund = No, (51K < Income \leq 52K)} \rightarrow {Check = No}$

 ${Refund = No, (50K < Income \le 60K)} \rightarrow {Check = No}$

Approach by Srikant & Agrawal

● Preprocess the data

– Discretize attribute using equi-depth partitioning

 Use *partial completeness measure* to determine number of partitions

 Merge adjacent intervals as long as support is less than max-support

● Apply existing association rule mining algorithms

● Determine interesting rules in the output

Approach by Srikant & Agrawal

● Discretization will lose information

– Use *partial completeness measure* to determine how much information is lost

C: frequent itemsets obtained by considering all ranges of attribute values P: frequent itemsets obtained by considering all ranges over the partitions

P is *K-complete* w.r.t C if $P \subseteq C$, and $\forall X \in C$, $\exists X' \in P$ such that:

1. X' is a generalization of X and support $(X') \le K \times$ support (X) $(K \ge 1)$ 2. $\forall Y \subseteq X, \exists Y' \subseteq X'$ such that support $(Y') \leq K \times$ support (Y)

Given *K (partial completeness level),* can determine number of intervals (N)

Interestingness Measure

 ${Refund = No, (Income = $51,250)} \rightarrow {Check = No}$

 ${Refund = No, (51K < Income \leq 52K)} \rightarrow {Check = No}$

 ${Refund = No, (50K < Income \le 60K)} \rightarrow {Check = No}$

• Given an itemset: $Z = \{z_1, z_2, ..., z_k\}$ and its generalization $Z' = \{z_1', z_2', ..., z_k'\}$

> P(Z): support of Z $E_z(Z)$: expected support of Z based on Z' *P z*

$$
E_{z}(Z) = \frac{P(z_{1})}{P(z_{1})} \times \frac{P(z_{2})}{P(z_{2})} \times \cdots \times \frac{P(z_{k})}{P(z_{k})} \times P(Z')
$$

<u>Z is R-interesting w.r.t. Z' if $P(Z) \ge R \times E_z(Z)$ </u>

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 11

Interestingness Measure

• For S: $X \rightarrow Y$, and its generalization S': $X' \rightarrow Y'$ $P(Y|X)$: confidence of $X \rightarrow Y$ $P(Y'|X')$: confidence of $X' \to Y'$ E_{S} (Y|X): expected support of Z based on Z'

$$
E(Y | X) = \frac{P(y_1)}{P(y_1)} \times \frac{P(y_2)}{P(y_2)} \times \cdots \times \frac{P(y_k)}{P(y_k)} \times P(Y | X')
$$

● Rule S is R-interesting w.r.t its ancestor rule S' if

- $-$ Support, $P(S) \ge R \times E_{s}(S)$ or
- $-$ Confidence, $P(Y|X) \ge R \times E_{s}(Y|X)$

Statistics-based Methods

● Example:

Browser=Mozilla ∧ Buy=Yes → Age: µ=23

- Rule consequent consists of a continuous variable, characterized by their statistics
	- mean, median, standard deviation, etc.
- Approach:
	- Withhold the target variable from the rest of the data
	- Apply existing frequent itemset generation on the rest of the data
	- For each frequent itemset, compute the descriptive statistics for the corresponding target variable

 Frequent itemset becomes a rule by introducing the target variable as rule consequent

– Apply statistical test to determine interestingness of the rule

Statistics-based Methods

- How to determine whether an association rule interesting?
	- Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$
A \Rightarrow B: \mu \quad \text{versus} \quad A \Rightarrow B: \mu'
$$

- Statistical hypothesis testing:
	- \blacklozenge Null hypothesis: H0: $\mu' = \mu + \Delta$
	- Alternative hypothesis: H1: μ' > μ + Δ

1

n

s

2 1

'

 $=\frac{\mu-\mu}{\sqrt{2}}$

Z

2

n

s

+

 $-\mu-\Delta$

2 2

Statistics-based Methods

● Example:

r: Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23

- Rule is interesting if difference between μ and μ' is greater than 5 years (i.e., Δ = 5)
- $-$ For r, suppose n1 = 50, s1 = 3.5
- For r' (complement): $n2 = 250$, $s2 = 6.5$

$$
Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11
$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

Min-Apriori (Han et al)

Document-term matrix:

Example:

W1 and W2 tends to appear together in the same document

Min-Apriori

- Data contains only continuous attributes of the same "type"
	- e.g., frequency of words in a document

- Potential solution:
	- Convert into 0/1 matrix and then apply existing algorithms
		- lose word frequency information
	- Discretization does not apply as users want association among words not ranges of words

Min-Apriori

● How to determine the support of a word?

- If we simply sum up its frequency, support count will be greater than total number of documents!
	- \blacklozenge Normalize the word vectors e.g., using L₁ norm
	- ◆ Each word has a support equals to 1.0

Min-Apriori

• New definition of support:

$$
\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)
$$

Example: Sup(W1,W2,W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17

Anti-monotone property of Support

Example:

Sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1

Sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9

Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17

- Why should we incorporate concept hierarchy?
	- Rules at lower levels may not have enough support to appear in any frequent itemsets
	- Rules at lower levels of the hierarchy are overly specific
		- e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc.

are indicative of association between milk and bread

- How do support and confidence vary as we traverse the concept hierarchy?
	- $-$ If X is the parent item for both X1 and X2, then σ(X) ≤ σ(X1) + σ(X2)
	- If $σ(X1∪Y1) ≥ minusup,$ and X is parent of $X1$, Y is parent of Y1 then $\sigma(X \cup Y_1) \ge \text{minsup}, \sigma(X_1 \cup Y_1) \ge \text{minsup}$ $\sigma(X \cup Y) \geq$ minsup
	- If conf(X1 ⇒ Y1) ≥ minconf, then conf($X1 \Rightarrow Y$) ≥ minconf

- **Approach 1:**
	- Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}

Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

● Issues:

- Items that reside at higher levels have much higher support counts
	- \bullet if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

- Approach 2:
	- Generate frequent patterns at highest level first
	- Then, generate frequent patterns at the next highest level, and so on

● *Issues:*

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Sequence Data

Examples of Sequence Data

Formal Definition of a Sequence

• A sequence is an ordered list of elements (transactions)

 $s = < e_1 e_2 e_3 ... >$

– Each element contains a collection of events (items)

$$
\mathbf{e}_{i} = \{i_{1}, i_{2}, \ldots, i_{k}\}
$$

– Each element is attributed to a specific time or location

- Length of a sequence, $|s|$, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

● Web sequence:

 < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

• Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

• Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

 \bullet A sequence $\le a_1 a_2 \dots a_n$ is contained in another sequence $$ $i_1 < i_2 < \ldots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A *sequential pattern* is a frequent subsequence (i.e., a subsequence whose support is ≥ *minsup*)

Sequential Pattern Mining: Definition

- Given:
	- a database of sequences
	- a user-specified minimum support threshold, *minsup*
- \bullet Task:
	- Find all subsequences with support ≥ *minsup*

Sequential Pattern Mining: Challenge

• Given a sequence: $\langle a \ b \rangle$ {c d e} {f} {g h i}

– Examples of subsequences: $\langle a \rangle$ {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

● How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences: $\langle i_1 \rangle$, $\langle i_2 \rangle$, $\langle i_3 \rangle$, ..., $\langle i_n \rangle$
- Candidate 2-subsequences: $\langle i_1, i_2 \rangle$, $\langle i_1, i_3 \rangle$, ..., $\langle i_1 \rangle$ $\langle i_1 \rangle$, $\langle i_1 \rangle$, $\langle i_2 \rangle$, ..., $\langle i_{n-1} \rangle$ $\langle i_n \rangle$
- Candidate 3-subsequences: $\langle i_1, i_2, i_3 \rangle$, $\langle i_1, i_2, i_4 \rangle$, ..., $\langle i_1, i_2 \rangle$ $\langle i_1 \rangle$, $\langle i_1, i_2 \rangle$ $\langle i_2 \rangle$, ..., $\langle i_1 \rangle \{i_1, i_2\} \rangle$, $\langle i_1 \rangle \{i_1, i_3\} \rangle$, ..., $\langle i_1 \rangle \{i_1\} \{i_1\} \{i_1\} \{i_2\} \rangle$, ...

Generalized Sequential Pattern (GSP)

- **Step 1**:
	- Make the first pass over the sequence database D to yield all the 1 element frequent sequences

● **Step 2**:

Repeat until no new frequent sequences are found

- **Candidate Generation**:
	- Merge pairs of frequent subsequences found in the (k-1)*th* pass to generate candidate sequences that contain k items

– **Candidate Pruning**:

Prune candidate *k*-sequences that contain infrequent (*k-1)*-subsequences

– **Support Counting**:

 Make a new pass over the sequence database D to find the support for these candidate sequences

– **Candidate Elimination**:

Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate Generation

Base case (k=2):

- $-$ Merging two frequent 1-sequences $\langle i_1 \rangle$ and $\langle i_2 \rangle$ will produce two candidate 2-sequences: $\langle i_1 \rangle \{i_2\}$ > and $\langle i_1, i_2 \rangle$ >
- General case (k>2):
	- $-$ A frequent (k -1)-sequence w_1 is merged with another frequent $(k-1)$ -sequence w_2 to produce a candidate k -sequence if the subsequence obtained by removing the first event in w_1 is the same as the subsequence obtained by removing the last event in w_2
		- \bullet The resulting candidate after merging is given by the sequence w_1 extended with the last event of $w₂$.
			- $-$ If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
			- $-$ Otherwise, the last event in w_2 becomes a separate element appended to

the end of w_1

Candidate Generation Examples

Merging the sequences $w_1 = <$ {1} {2 3} {4}> and $w_2 = <$ {2 3} {4 5}> will produce the candidate sequence \leq {1} {2 3} {4 5} because the last two events in w_2 (4 and 5) belong to the same element

- **Merging the sequences** $w_1 = <$ {1} {2 3} {4}> and $w_2 = <$ {2 3} {4} {5}> will produce the candidate sequence \leq {1} {2 3} {4} {5} because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <$ {1} {2 6} {4}> and $w_2 = <$ {1} {2} {4 5}> to produce the candidate \leq {1} {2 6} {4 5} because if the latter is a viable candidate, then it can be obtained by merging w_1 with $<$ {1} {2 6} {5} >

GSP Example

Timing Constraints (I)

xg : max-gap

ng : min-gap

m^s : maximum span

 $x_g = 2$, $n_g = 0$, $m_s = 4$

- Approach 1:
	- Mine sequential patterns without timing constraints
	- Postprocess the discovered patterns
- Approach 2:
	- Modify GSP to directly prune candidates that violate timing constraints
	- Question:
		- ◆ Does Apriori principle still hold?

Apriori Principle for Sequence Data

Suppose:

- x_{g} = 1 (max-gap)
	- $n_g = 0$ (min-gap)
	- m_s = 5 (maximum span)

minsup = 60%

 $<$ {2} {5} $>$ support = 40% but $\langle 2 \, 3 \, 3 \, 5 \rangle$ support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

© Tan,Steinbach, Kumar **Introduction to Data Mining** 1995 4/18/2004 41

Contiguous Subsequences

s is a contiguous subsequence of

 $w = < e_2< \ldots < e_k>$

if any of the following conditions hold:

- $\,$ s is obtained from w by deleting an item from either ${\tt e_i}$ or ${\tt e_k}$
- $-$ s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: $s = <$ {1} {2} >
	- is a contiguous subsequence of < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
	- is not a contiguous subsequence of $<$ {1} {3} {2} and $<$ {2} {1} {3} {2} >

Modified Candidate Pruning Step

- Without maxgap constraint:
	- A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
	- A candidate *k*-sequence is pruned if at least one of its **contiguous** (*k-1*)-subsequences is infrequent

Timing Constraints (II)

xg : max-gap

ng : min-gap

ws: window size

m^s : maximum span

$$
x_g = 2
$$
, $n_g = 0$, $ws = 1$, $m_s = 5$

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
	- Any data sequences that contain

 $\langle ... \{a \ c \} ... \rangle$ <... {a} ... {c}...> (where time({c}) – time({a}) \leq ws) $\langle ... \{c\} ... \{a\} ... \rangle$ (where time($\{a\}$) – time($\{c\}$) \le ws)

will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
	- Example:
		- monitoring network traffic events for attacks
		- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
	- This problem is also known as frequent episode mining

Pattern: <E1> <E3>

General Support Counting Schemes

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

Representing Transactions as Graphs

● Each transaction is a clique of items

Representing Graphs as Transactions

G1 G2

© Tan,Steinbach, Kumar **Introduction to Data Mining** 1995 12004 51

G3

Challenges

- Node may contain duplicate labels
- Support and confidence
	- How to define them?
- Additional constraints imposed by pattern structure
	- Support and confidence are not the only constraints
	- Assumption: frequent subgraphs must be connected
- Apriori-like approach:
	- $-$ Use frequent k-subgraphs to generate frequent (k+1) subgraphs
		- ◆What is k?

● Support:

- number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
	- Vertex growing:
		- \bullet k is the number of vertices
	- Edge growing:
		- \bullet k is the number of edges

Vertex Growing

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
	- Candidate generation
		- Use frequent (*k-1*)-subgraphs to generate candidate *k*-subgraph
	- Candidate pruning
		- ◆ Prune candidate subgraphs that contain infrequent (*k-1*)-subgraphs
	- Support counting
		- ◆ Count the support of each remaining candidate
	- Eliminate candidate *k*-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

G1 G2

G3

G4

Example

Candidate Generation

- In Apriori:
	- Merging two frequent *k*-itemsets will produce a candidate (*k+1*)-itemset
- In frequent subgraph mining (vertex/edge growing)
	- Merging two frequent *k*-subgraphs may produce more than one candidate (*k+1*)-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

© Tan,Steinbach, Kumar **Introduction to Data Mining** 1995 12004 61

Multiplicity of Candidates (Edge growing)

Multiplicity of Candidates (Edge growing)

Adjacency Matrix Representation

• **The same graph can be represented in many ways**

Graph Isomorphism

● A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
	- During candidate generation step, to determine whether a candidate has been generated
	- During candidate pruning step, to check whether its (*k-1*)-subgraphs are frequent
	- During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

● Use canonical labeling to handle isomorphism

- Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
- Example:

Lexicographically largest adjacency matrix

