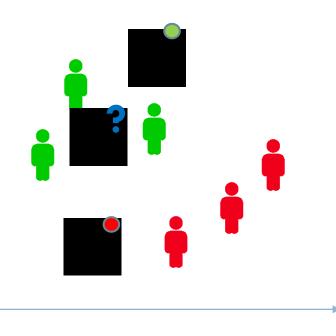
Advanced classification methods

The most stupid classifier

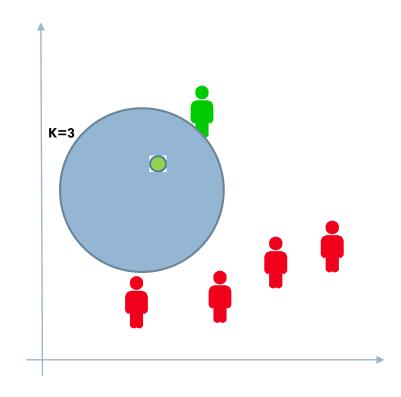
Rote learner

- To classify object X, check if there is a labelled example in the training set identical to X
- Yes \rightarrow X has the same label
- \square No \rightarrow I don't know



Classify by similarity

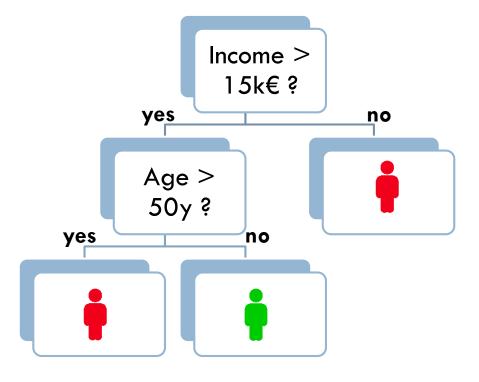
- K-Nearest Neighbors
 - Decide label based on K most similar examples

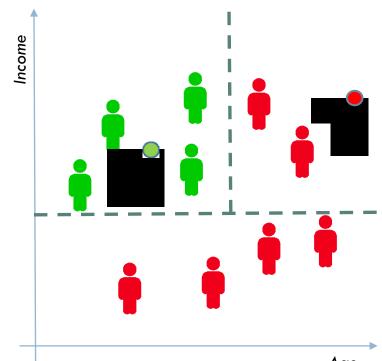


Build a model

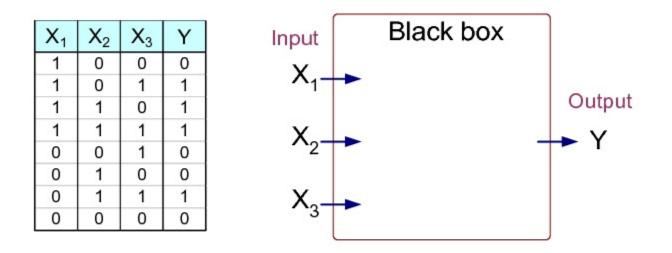
Decision Trees

Cut space by lines orthogonal to the axes



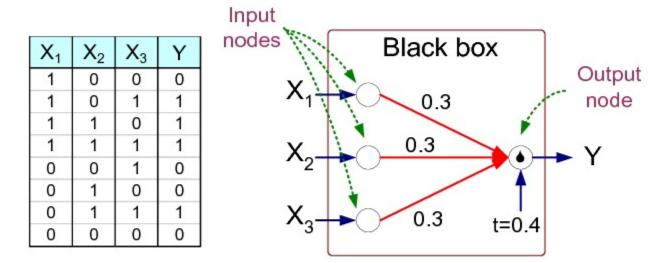


Artificial Neural Networks (ANN)



Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

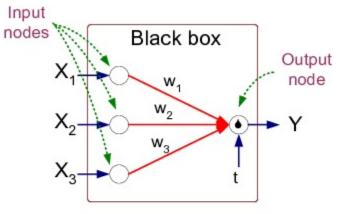


$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

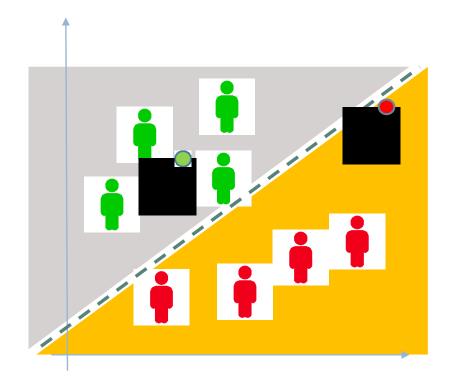


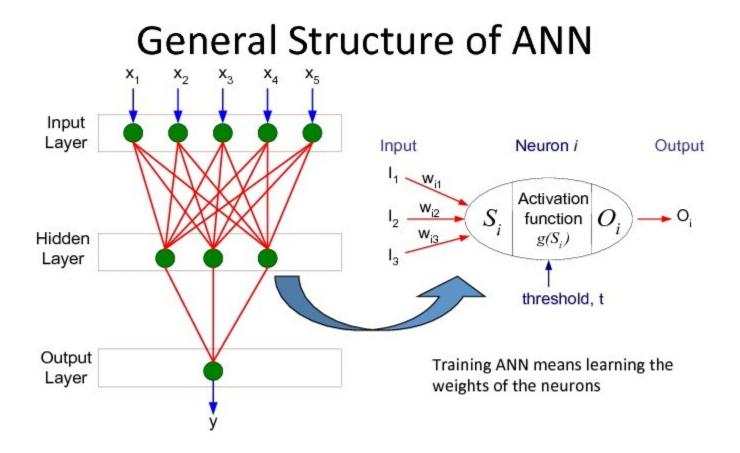
Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or }$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

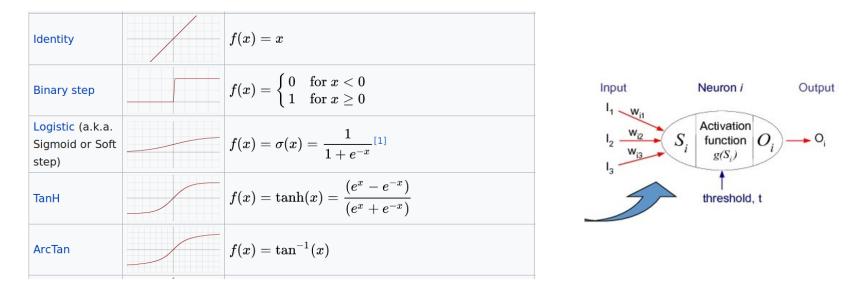
Sample model on 2-D

- □ Linear separation line
 - General case: lines can be oblique





Notice: activation function is fundamental !!!



With Identity (= no activation function) the ANN reduces to a simple perceptron
Proof: a linear sum of linear sums, is just another linear sum

Algorithm for learning ANN

- Initialize the weights (w₀, w₁, ..., w_k)
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples E

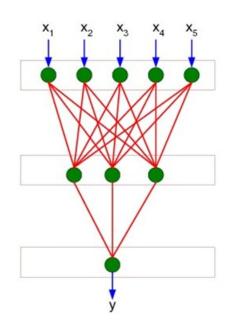
Objective function:

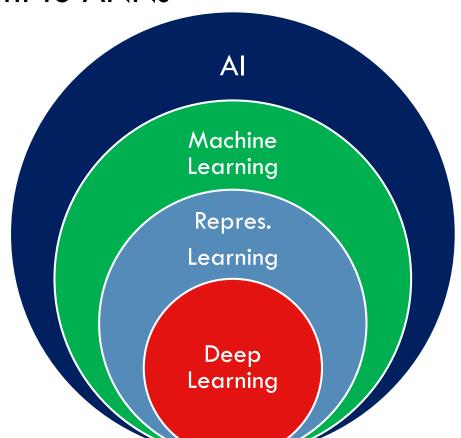
$$=\sum_{i}\left[Y_{i}-f(w_{i},X_{i})\right]^{2}$$

- Find the weights w_i's that minimize the above objective function
 - e.g., backpropagation algorithm (see lecture notes)

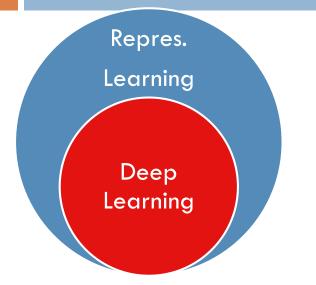
A quick look on Deep Learning

- Various approaches exist
- Basic examples equivalent to ANNs with several levels





Deep learning



Representation learning methods that

- allow a machine to be fed with raw data and
- to automatically discover the representations needed for detection or classification.

Raw representation

- Age
- Weight
- Income
- Children

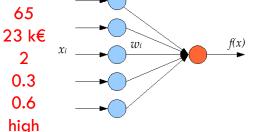
. . .

- Likes sport
- Likes reading (

35

• • •

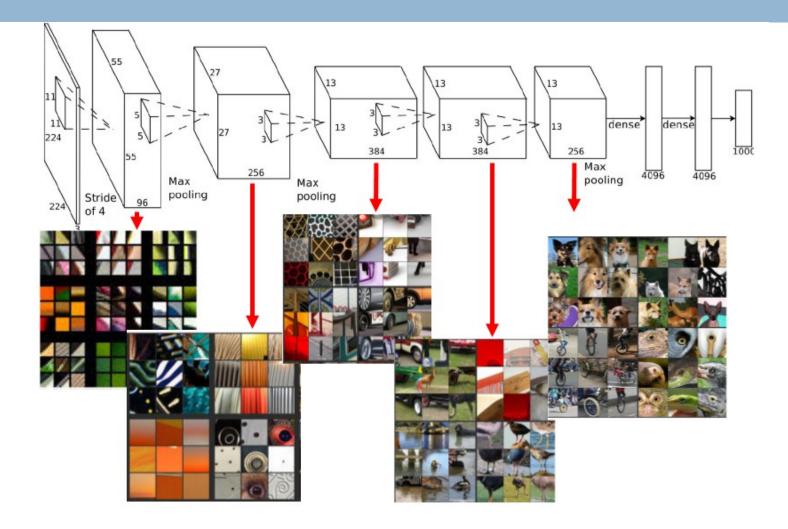
Education



Higher-level representation

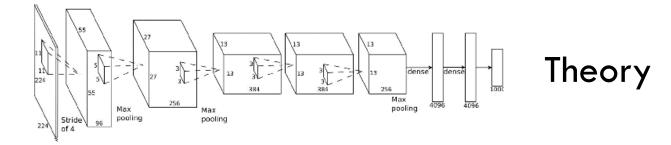
- Young parent 0.9
- Fit sportsman 0.1
- High-educated reader 0.8
- Rich obese 0.0
-

Multiple Levels Of Abstraction

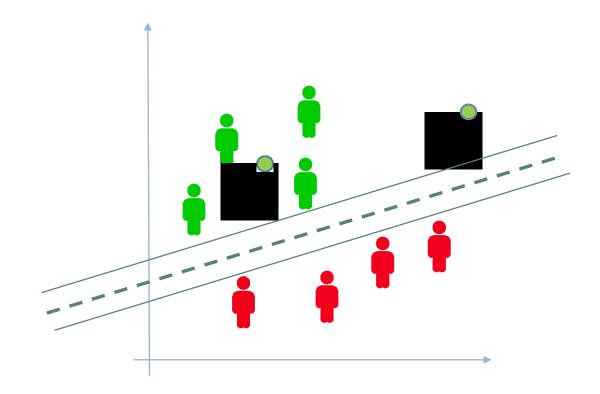


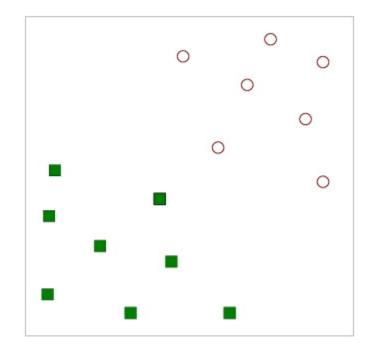
Why now?

(Big) Data

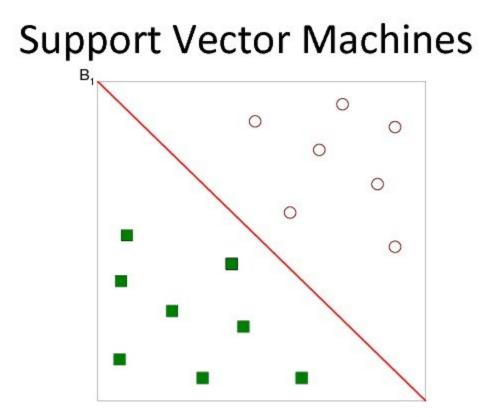


Support Vector Machine

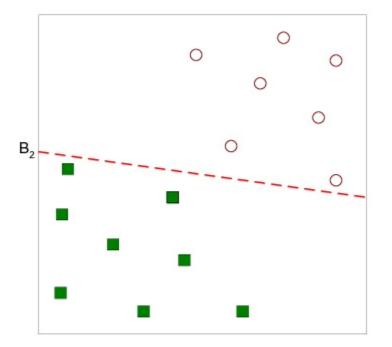




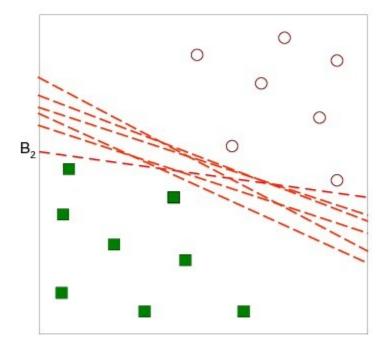
Find a linear hyperplane (decision boundary) that will separate the data



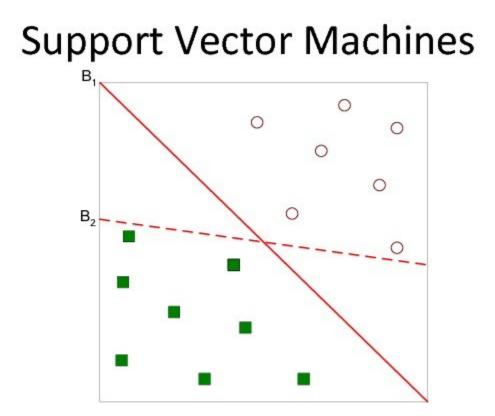
One Possible Solution



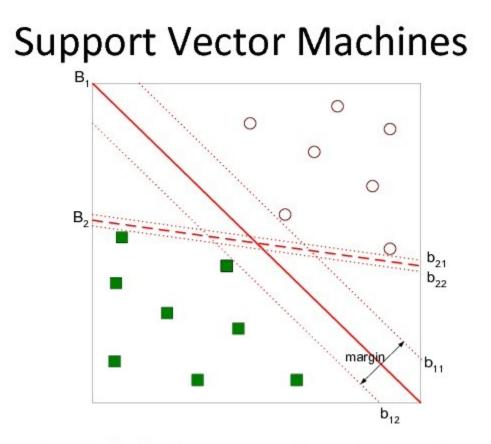
Another possible solution



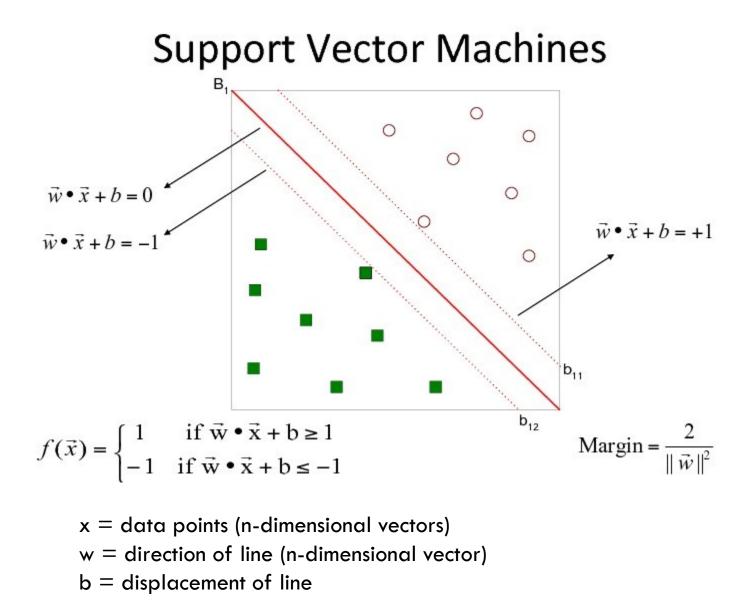
Other possible solutions

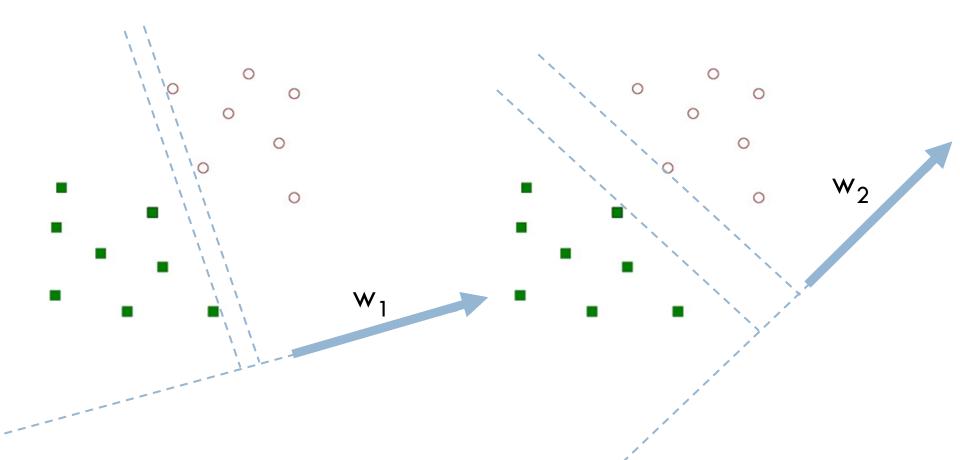


- Which one is better? B1 or B2?
- How do you define better?



• Find hyperplane maximizes the margin => B1 is better than B2





Each data point is projected over direction w

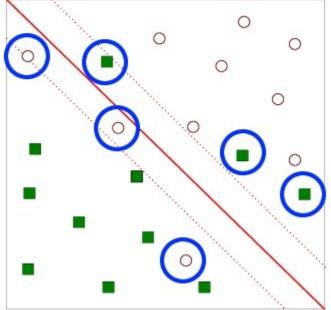
 \square Projections along w₂ have much larger margin than w₁

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$ - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

• What if the problem is not linearly separable?



- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

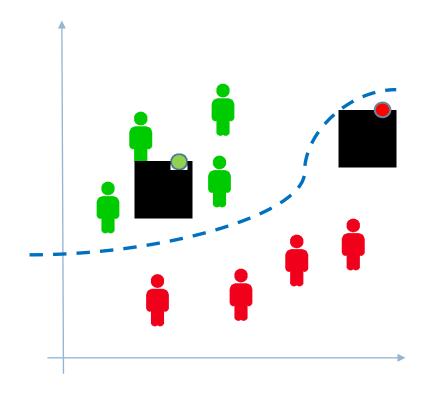
$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \neq 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \neq -1 + \xi_i \end{cases}$$

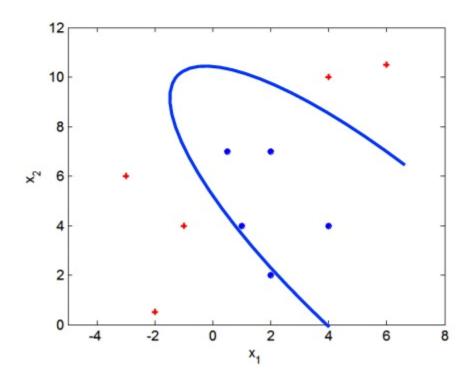
- Basically, each point is "moved" by a a specific amount along the w direction
- The cost function "pays" for each extra movement

Non-linear separation line



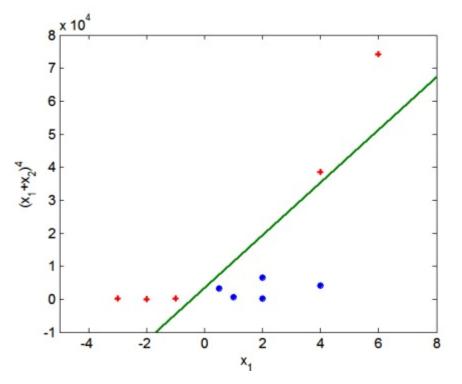
Nonlinear Support Vector Machines

• What if decision boundary is not linear?



Nonlinear Support Vector Machines

• Transform data into higher dimensional space



- Key problem: find the most appropriate set of extra dimensions
 - They are derived from original attributes
 - Most common: x^2 , $(x+y)^2$, and other polynomials