Data Mining Cluster Analysis

General principles & K-means algorithm(s)

Main source: slides from "Lecture Notes for Chapter 7 -- Introduction to Data Mining, 2nd Edition", by Tan, Steinbach, Karpatne, Kumar

Preliminaries

Classification and Clustering

Two members of the same family

Classification

- Aims to learn how to recognize objects of different categories
- Categories are pre-defined: good vs bad, etc.

Clustering

- Aims to understand if the data seem to form different categories
- Categories are not defined in advance

A common basic setting

- What we have
 - A set of objects, each of them described by some features
 - people described by age, gender, height, etc.
 - bank transactions described by type, amount, time, etc.

Classification problem

- Associate the objects of a set to a class, taken from a predefined list
 - • good customer" vs. "churner"
 - ● "normal transaction" vs. "fraudulent"

• Of the second seco

Classification problem

- What we know
 - No domain knowledge or theory
 - Only examples: Training Set
 - Subset of labelled objects
- What we can do
 - Learn from examples
 - Make inferences about the other objects

Classify by similarity

- K-Nearest Neighbors
 - Decide label based on K most similar examples

Build a model

• Basic example: linear separation line

 Classification starts from predefined labels and some examples to learn

- What if no labels are known?
 - We might lack examples
 - Labels might actually not exist at all...

- Objective: find structure in the data
- Group objects into clusters of "similar" entities

Clustering: K-means (sneak peek)

• Find k subgroups that form compact and wellseparated clusters

Clustering: K-means (sneak peek)

• Output 1: a partitioning of the initial set of objects

Clustering: K-means (sneak peek)

- Output 2: K representative objects (centroids)
- Centroid = average profile of the objects in the cluster

• What if we add one element?

- What if we add one element?
- Which clustering do you like most?

• What about this ?!?

• What about this ?!?

Clustering: hierarchical structures

• Sometimes we could have (or desire) multiple levels of aggregation

Clustering: hierarchical structures

• A hierarchy of clusters

Clustering everything ?

• What do we do with Outliers?

The many notions of «cluster»

What is Cluster Analysis?

Traditional definition (but not universal!): finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

 Reduce the size of large data sets

What is not Cluster Analysis?

- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
 - Clustering is a grouping of objects based on the data
- Supervised classification
 - Have class label information
- Association Analysis
 - based on groups, but different meaning
 - --> will be a topic of (much) later classes

Notion of a Cluster can be Ambiguous

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or '**border**' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - **Probabilistic** clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data

Or, possible features that clusters are expected to show:

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or concept described by an Objective Function

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - Each point is closer to at least one point in its cluster than to any point in another cluster.
 - Graph based clustering

This approach can have trouble when noise is present since a small bridge of points can merge two distinct clusters

8 contiguous clusters

02/14/2018

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

02/14/2018

Types of Clusters: Objective Function

- Clusters Defined by an Objective Function
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - Central to clustering
 - Depends on data and application
- Data characteristics that affect proximity and/or density are
 - Dimensionality
 - Sparseness
 - Attribute type
 - Special relationships in the data
 - For example, autocorrelation
 - Distribution of the data
- Noise and Outliers
 - Often interfere with the operation of the clustering algorithm

02/14/2018

Three fundamental clustering algorithms

Clustering Algorithms

K-means and its variants

- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a **centroid** (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple:

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

02/14/2018

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)

- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
- Given two sets of clusters, we prefer the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

K-means as a greedy optimization alg.

- **Q:** Given K centroids, which cluster assignment minimizes SSE ?
- A: Each object contributes to the SSE; just minimize each contribution, i.e. assign the centroid with smallest dist(m_i,x)
- **Q:** Given a set of clusters, which centroids minimize SSE ?
- A: Assume Euclidean distance; minimize by cluster; set partial derivatives to zero (for all "j": d SSE / d m[j] = 0) and solve. Result: m_i = mean point of the cluster.

02/14/2018

K-means as a greedy optimization alg.

- **Q:** Does k-means terminate ?
- A: Yes. At each step SSE cannot increase, and the number of clustering configurations is finite, thus will stop, sooner or later (Tricky examples exist. Better replace 5. with "SSE does not decrease")
- **Q:** Does k-means find the optimum?
- A: It finds a local optimum, which might be not the global one (see next slides for examples)

02/14/2018

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

02/14/2018

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

02/14/2018

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

Empty Clusters

K-means can yield empty clusters

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose a point and assign it to the cluster
 Choose the point that contributes most to SSE
 Choose a point from the cluster with the highest SSE
- If there are several empty clusters, the above can be repeated several times.

Pre-processing and Post-processing

Pre-processing

- Normalize the data
- Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process
 ISODATA

Importance of Choosing Initial Centroids

02/14/2018

Importance of Choosing Initial Centroids ...

02/14/2018

Ideal solution: one initial centroid per cluster

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

 $P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K! n^K}{(Kn)^K} = \frac{K!}{K^K}$

- For example, if K = 10, then

(assumes the same centroid can be selected multiple times...)

- probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

\cap

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

02/14/2018

5

10 15 20

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

02/14/2018

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Extract a small sample of data and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Post-processing
- Generate a larger number of clusters and then group them -- e.g. by a hierarchical clustering
- Bisecting K-means
 - Not as susceptible to initialization issues

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - Introduces an order dependency
 - Never get an empty cluster
 - Can use "weights" to change the impact

Algorithm 3 Bisecting K-means Algorithm.

1: Initialize the list of clusters to contain the cluster containing all points.

2: repeat

- 3: Select a cluster from the list of clusters
- 4: for i = 1 to number_of_iterations do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of
- 8: until Until the list of clusters contains K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

02/14/2018

Bisecting K-means Example

