Data Mining Cluster Analysis

Hierarchical algorithms

Main source: slides from "Lecture Notes for Chapter 7 -- Introduction to Data Mining, 2nd Edition", by Tan, Steinbach, Karpatne, Kumar

Hierarchical Clustering

- Produces a set of **nested clusters** organized as a hierarchical tree
- □ Can be visualized as a dendrogram
	- A tree like diagram that records the sequences of merges or splits

02/14/2018 Introduction to Data Mining, 2nd Edition 2

5

Strengths of Hierarchical Clustering

- □ Do not have to assume any particular number of clusters
	- Any desired number of clusters can be obtained by **'cutting' the dendrogram** at the proper level
- □ They may correspond to meaningful taxonomies
	- Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, …)

Hierarchical Clustering

- □ Two main types of hierarchical clustering
	- Agglomerative:
		- \triangle Start with the points as individual clusters
		- ◆ At each step, **merge the closest pair** of clusters until only one cluster (or k clusters) left
	- Divisive:
		- ◆ Start with one, all-inclusive cluster
		- ◆ At each step, **split a cluster** until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
	- Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique П
- Basic algorithm is straightforward \Box
	- 1. Compute the proximity matrix
	- 2. Let each data point be a cluster
	- **3. Repeat**
	- 4. Merge the two closest clusters
	- 5. Update the proximity matrix
	- **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of \Box two clusters
	- Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

p1 Start with checters of individual points and to p11 proximity matrix

...

. Proximity Matrix

Intermediate Situation

Intermediate Situation

C1

How to Define Inter-Cluster Distance

- MAX П
- Group Average П
- Distance Between Centroids П
- Other methods driven by an objective \Box function
	- Ward's Method uses squared error

Proximity Matrix

.

.

- MAX П
- Group Average П
- Distance Between Centroids П
- Other methods driven by an objective \Box function
	- Ward's Method uses squared error

Proximity Matrix

.

.

.

.

- MIN П
- MAX П
- Group Average П
- Distance Between Centroids П
- Other methods driven by an objective \Box function
	- Ward's Method uses squared error

Proximity Matrix

- MIN П
- MAX П
- Group Average \Box
- Distance Between Centroids П
- Other methods driven by an objective \Box function
	- Ward's Method uses squared error

Proximity Matrix

.

.

- MAX П
- Group Average П
- Distance Between Centroids П
- Other methods driven by an objective \Box function
	- Ward's Method uses squared error

Proximity Matrix

.

.

MIN or Single Link

- □ Proximity of two clusters is based on the two closest points in the different clusters
	- Determined by one pair of points, i.e., by one link in the proximity graph
- □ Example:

Distance Matrix:

Hierarchical Clustering: MIN

Nested Clusters Dendrogram

Strength of MIN

Original Points Six Clusters

• **Can handle non-elliptical shapes**

Limitations of MIN

MAX or Complete Linkage

- □ Proximity of two clusters is based on the two most distant points in the different clusters
	- Determined by all pairs of points in the two clusters

Distance Matrix:

Hierarchical Clustering: MAX

Nested Clusters Dendrogram

Strength of MAX

Original Points Two Clusters

• **Less susceptible to noise and outliers**

Limitations of MAX

Original Points Two Clusters

- **Tends to break large clusters**
- **Biased towards globular clusters**

Group Average

Proximity of two clusters is the average of pairwise proximity \Box between points in the two clusters.

$$
\sum_{p_i \in Cluster_i} \text{proximity}(p_i, p_j)
$$
\n
$$
\text{proximity}(Cluster_i, Cluster_j) = \frac{\sum_{p_i \in Cluster_i} \text{proximity}(p_i, p_j)}{|Cluster_i| \times | Cluster_j|}
$$

Need to use average connectivity for scalability since total \Box proximity favors large clusters

Distance Matrix:

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete \Box Link

- **Strengths** \Box
	- Less susceptible to noise and outliers
- **n** Limitations
	- Biased towards globular clusters

Cluster Similarity: Ward's Method

- □ Similarity of two clusters is based on the increase in squared error when two clusters are merged
	- Similar to group average if distance between points is distance squared
- □ Less susceptible to noise and outliers
- □ Biased towards globular clusters
- □ Hierarchical analogue of K-means
	- Can be used to initialize K-means

Hierarchical Clustering: Comparison

MST: Divisive Hierarchical Clustering

□ Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q

MST: Divisive Hierarchical Clustering

□ Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1. Compute a minimum spanning tree for the proximity graph.
- $2:$ repeat
- Create a new cluster by breaking the link corresponding to the largest distance $3:$ (smallest similarity).
- 4: **until** Only singleton clusters remain

O(N²) space since it uses the proximity matrix. – N is the number of points.

- O(N³) time in many cases
	- $-$ There are N steps and at each step the size, N^2 , proximity matrix must be updated and searched
	- Complexity can be reduced to $O(N^2 \log(N))$ time with some cleverness
- □ Once a decision is made to combine two clusters, it cannot be undone
- □ No global objective function is directly minimized
- □ Different schemes have problems with one or more of the following:
	- Sensitivity to noise and outliers
	- Difficulty handling clusters of different sizes and nonglobular shapes
	- Breaking large clusters