
Data Mining Cluster Analysis

Main source: slides from "Lecture Notes for Chapter 7 -- Introduction to Data Mining, 2nd

Edition", by Tan, Steinbach, Karpatne, Kumar

Hierarchical algorithms
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Hierarchical Clustering 

Produces a set of nested clusters organized as 

a hierarchical tree

Can be visualized as a dendrogram

– A tree like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical Clustering

Do not have to assume any particular number of 
clusters

– Any desired number of clusters can be obtained by 
‘cutting’ the dendrogram at the proper level

They may correspond to meaningful taxonomies

– Example in biological sciences (e.g., animal kingdom, 
phylogeny reconstruction, …)
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Hierarchical Clustering

Two main types of hierarchical clustering

– Agglomerative:  

◆ Start with the points as individual clusters

◆ At each step, merge the closest pair of clusters until only one 

cluster (or k clusters) left

– Divisive:  

◆ Start with one, all-inclusive cluster 

◆ At each step, split a cluster until each cluster contains an individual 

point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or 

distance matrix

– Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

Most popular hierarchical clustering technique

Basic algorithm is straightforward

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

Key operation is the computation of the proximity of 
two clusters

– Different approaches to defining the distance between 
clusters distinguish the different algorithms
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Starting Situation 

Start with clusters of individual points and a 

proximity matrix
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Intermediate Situation

After some merging steps, we have some clusters 
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Intermediate Situation

We want to merge the two closest clusters (C2 and C5)  and 

update the proximity matrix. 
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After Merging

The question is “How do we update the proximity matrix?” 
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How to Define Inter-Cluster Distance
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective 

function

– Ward’s Method uses squared error



02/14/2018 Introduction to Data Mining, 2nd Edition 12

How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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MIN or Single Link 

Proximity of two clusters is based on the two 

closest points in the different clusters

– Determined by one pair of points, i.e., by one link in the 

proximity graph

Example:

Distance Matrix:
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Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Six Clusters

• Can handle non-elliptical shapes
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Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers
Three Clusters
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MAX or Complete Linkage

Proximity of two clusters is based on the two 

most distant points in the different clusters

– Determined by all pairs of points in the two clusters

Distance Matrix:
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

• Tends to break large clusters

• Biased towards globular clusters
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Group Average

Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

Need to use average connectivity for scalability since total 

proximity favors large clusters
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Distance Matrix:
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Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

Compromise between Single and Complete 

Link

Strengths

– Less susceptible to noise and outliers

Limitations

– Biased towards globular clusters
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Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase 

in squared error when two clusters are merged

– Similar to group average if distance between points is 

distance squared

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of K-means

– Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)
– Start with a tree that consists of any point

– In successive steps, look for the closest pair of points (p, q)  such 

that one point (p) is in the current tree but the other (q) is not

– Add q to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters
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Hierarchical Clustering:  Time and Space requirements

O(N2) space since it uses the proximity matrix.  

– N is the number of points.

O(N3) time in many cases

– There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched

– Complexity can be reduced to O(N2 log(N) ) time with 

some cleverness



02/14/2018 Introduction to Data Mining, 2nd Edition 31

Hierarchical Clustering:  Problems and Limitations

Once a decision is made to combine two clusters, 

it cannot be undone

No global objective function is directly minimized

Different schemes have problems with one or 

more of the following:

– Sensitivity to noise and outliers

– Difficulty handling clusters of different sizes and non-

globular shapes

– Breaking large clusters


