Data Mining Cluster Analysis

Hierarchical algorithms

Main source: slides from "Lecture Notes for Chapter 7 -- Introduction to Data Mining, 2nd
Edition", by Tan, Steinbach, Karpatne, Kumar



Hierarchical Clustering

0 Produces a set of nested clusters organized as
a hierarchical tree
0 Can be visualized as a dendrogram

— A tree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

0 Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by
‘cutting’ the dendrogram at the proper level

0 They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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Hierarchical Clustering

0 Two main types of hierarchical clustering
— Agglomerative:

< Start with the points as individual clusters

¢ At each step, merge the closest pair of clusters until only one
cluster (or k clusters) left

— Divisive:
¢ Start with one, all-inclusive cluster

¢ At each step, split a cluster until each cluster contains an individual
point (or there are k clusters)

0 Traditional hierarchical algorithms use a similarity or
distance matrix

— Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

0 Most popular hierarchical clustering technique

0 Basic algorithm is straightforward

1. Compute the proximity matrix

2. Leteach data point be a cluster

3. Repeat

4. Merge the two closest clusters
5 Update the proximity matrix

6. Until only a single cluster remains

0 Key operation is the computation of the proximity of
two clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation
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Intermediate Situation
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After Merging ?

0 | The question is “Eow do we lIdeate the proximity matrix?” |
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How to Define Inter-Cluster Distance
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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MIN or Single Link

0 Proximity of two clusters is based on the two
closest points In the different clusters

— Determined by one pair of points, i.e., by one link in the
proximity graph

0 Example:

Distance Matrix:
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Hierarchical Clustering: MIN
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Strength of MIN
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tations of MIN
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MAX or Complete Linkage

0 Proximity of two clusters is based on the two

most distant points in the different clusters
— Determined by all pairs of points in the two clusters
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Hierarchical Clustering: MAX
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Strength of MAX
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Limitations of MAX
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» Tends to break large clusters

* Biased towards globular clusters
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Group Average

0 Proximity of two clusters is the average of pairwise proximity

between points in the two clusters.

proximity(Cluster, Cluster;) =

> proximity(p;, p;)

p;Cluster;

pjcCluster;

| Cluster; | x| Cluster; |

0 Need to use average connectivity for scalability since total
proximity favors large clusters
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

0 Compromise between Single and Complete
Link

0 Strengths
— Less susceptible to noise and outliers

0 Limitations
— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

0 Similarity of two clusters is based on the increase
In squared error when two clusters are merged

— Similar to group average if distance between points is
distance squared

0 Less susceptible to noise and outliers
0 Biased towards globular clusters

0 Hierarchical analogue of K-means
— Can be used to initialize K-means
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Hierarchical Clustering: Comparison
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MST: Divisive Hierarchical Clustering

0 Builld MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— Insuccessive steps, look for the closest pair of points (p, q) such
that one point (p) is in the current tree but the other (qg) is not

— Add g to the tree and put an edge between p and g
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MST: Divisive Hierarchical Clustering

0 Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

by

repeat
3:  Create a new cluster by breaking the link corresponding to the largest distance

(smallest similarity).

until Only singleton clusters remain
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Hierarchical Clustering: Time and Space requirements

0 O(N?) space since it uses the proximity matrix.
— N Is the number of points.

0 O(N3) time in many cases

— There are N steps and at each step the size, N?,
proximity matrix must be updated and searched

— Complexity can be reduced to O(N? log(N) ) time with
some cleverness
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Hierarchical Clustering: Problems and Limitations

0 Once a decision Is made to combine two clusters,
It cannot be undone

0 No global objective function is directly minimized

0 Different schemes have problems with one or
more of the following:
— Sensitivity to noise and outliers

— Difficulty handling clusters of different sizes and non-
globular shapes

— Breaking large clusters
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