Data Mining per il CRM Customer segmentation

Data Mining Technologies for CRM

2

Clustering

Customer segmentation

Clustering

Problem definition

3

Problem definition

• A data set with *N d*-dimensional data items.

- Determine a natural partitioning of the data set into a number of clusters (k) and noise.
- Clusters should be such that:
 - items in same cluster are similar
 - ➔intra-cluster similarity is maximized
 - items from different clusters are different
 - inter-cluster similarity is minimized

14/05/15

Example – clustering in 3D

Data: points in the 3D space
Similarity: based on (Euclidean) distance

Application: customer segmentation

 Large data base of customer data containing their properties and past buying records

14/05/15

 Find groups of customers with similar behavior

Case study: customer segmentation

7

14/05/15

AIR MILES

a case-study on customer segmentation

From: G. Saarenvirta, "Mining customer data", DB2 magazine on line, 1998 http://www.db2mag.com/98fsaar.html

Customer clustering & segmentation

Customer segments

Behavioral vs. demographic segments

- Within behavioral segments, a business may create demographic subsegments.
- Customer demographic data are not typically used together with behavioral data to create segments.
- Demographic (sub)segmenting is used to select appropriate tactics (advertising, marketing channels, and campaigns) to satisfy the strategic behavioral segment initiatives.

The Loyalty Group in Canada

 runs an AIR MILES Reward Program (AMRP) for a coalition of more than 125 companies in all industry sectors - finance, credit card, retail, grocery, gas, telecom.

60% of Canadian households enrolled

AMRP is a frequent-shopper program:

 the consumer collects bonuses that can then redeem for rewards (air travel, hotel accommodation, rental cars, theatre tickets, tickets for sporting events, ...)

14/05/15

Data capture

- The coalition partners capture consumer transactions and transmit them to The Loyalty Group, which
- stores these transactions and uses the data for database marketing initiatives on behalf of the coalition partners.
- The Loyalty Group data warehouse currently contains

13

- more than 6.3 million household records
- 1 billion transaction records.

Before data mining

- The Loyalty Group has employed standard analytical techniques
 - Recency, Frequency, Monetary value (RFM) analysis
 - online analytic processing tools
 - Inear statistical methods

to analyze the success of the various marketing initiatives undertaken by the coalition and its partners.

Data mining project at AMRP

 Goal: create a customer segmentation using a data mining tool and compare the results to an existing segmentation developed using RFM analysis.

data mining platform

 DB2 Universal Database Enterprise parallelized over a five-node RS/6000 SP parallel system.

 Intelligent Miner for Data (reason: has categorical clustering and product association algorithms which are not available in most other tools)

Data model

~ 50,000 customers and their associated transactions for a 12month period.

16

Data preparation

- Shareholder value" variables
 - revenue
 - customer tenure
 - number of sponsor companies shopped at over the customer tenure
 - number of sponsor companies shopped at over the last 12 months,
 - recency (in months) of the last transaction
- calculated by aggregating the transaction data and then adding then to each customer
- record 14/05/15

Data preparation (2)

 Dataset obtained by joining the transaction data to the customer file to create the input for clustering algorithms

14 categories of sponsor companies ×

- 3 variables per category ×
- 2 quarters (first two quarters of 1997)

Data cleansing - missing values

 demographic data is usually categorical has a high % of missing values the missing values can be set to either unknown or unanswered (if result of unanswered questions) if a large portion of the field is missing, it may be discarded. In the case study, missing numeric values set. to 0 14/05/15 19

Data transformation

Distribution of original data

Distribution of discretized data

22

Before/after discretization

Customer Data - Original Data Distribution

ATTING ACC ATTING A Customer Data - Discretized

DeteCOLA	84,0699	FEMALE	CENCIEN	GHOST	eorow	GOLDHS	GOLOW	GOLDUA
LANGCODE	MALE	NEWENR	PROVINCE	RECION	SUSINGS	SUNKE4	SUMM25	SUMM26
SUMM27	SAFECH				AMTHODP_			
			CACHER.	estML05.				
	FIAGEY.	LIAGE?		COLDISCH.	HP62E		INCOMES	INCOME!
RNCOMES	WCOBE3				ALTOP.		PEOLNEY_	
SOUTH 2	SCALLS-	SCOUNT.		SPONTAL	SPONTA.	SPONTIN_		CHEINIL.
	UNKAGE	UNKGEND	UNKONSH	UNKING	RATIO	RATIO2	RATIO2	

23

14/05/15

Figure3. Original data.

Clustering/segmentation methodology

IBM-IM demographic clustering

 Designed for categorical variables Similarity index: increases with number of common values on same attribute decreases with number of different values on same attribute I of clusters is not fixed a priori only upper bound set

25

Demographic clustering: data structure

Demographic clustering: similarity index

- \blacklozenge Similarity threshold α
 - i,j assumed similar if $s(i,j) > \alpha$
 - low values (<0.5) appropriate with highly different objects

IM Demographic clustering

- basic parameters:
 - Maximum number of clusters.
 - Maximum number of passes through the data.
 - Accuracy: a stopping criterion for the algorithm. If the change in the Condorcet criterion between data passes is smaller than the accuracy (as %), the algorithm will terminate.
 - The Condorcet criterion is a value in [0,1], where 1 indicates a perfect clustering -- all clusters are homogeneous and entirely different from all other clusters

... more parameters

- Similarity threshold.
 - defines the similarity threshold between two values in distance units.
 - If the similarity threshold is 0.5, then two values are considered equal if their absolute difference is less than or equal to 0.5.
- In the case study:
 - maximum # of clusters: 9
 - maximum # of passes: 5
 - accuracy: 0.1

14/05/15

Input dataset

- dataset: all continuous variables discretized.
- input variables :
 - # of products purchased over customer's lifetime
 - # of products purchased in the last 12 months
 - Customer's revenue contribution over lifetime
 - Customer tenure in months
 - Ratio of revenue to tenure
 - Ratio of number of products to tenure
 - Region
 - Recency
 - Tenure (# of months since customer first enrolled in the program).

Input dataset

 Other discrete and categorical variables and some interesting continuous variables were input as supplementary variables:

 variables used to profile the clusters but not to define them.

 easier interpretation of clusters using data other than the input variables.

Output of demographic clustering

Visualization of clusters

- horizontal strip = a cluster
- clusters are ordered from top to bottom in order of size
- variables are ordered from left to right in order of importance to the cluster, based on a chi-square test between variable and cluster ID.
- other metrics include entropy, Condorcet criterion, and database order.

Visualization of clusters

- variables used to define clusters are without brackets, while the supplementary variables appear within brackets.
- numeric (integer), discrete numeric (small integer), binary, and continuous variables have their frequency distribution shown as a bar graph.
- red bars = distribution of the variable within the current cluster.
- In the gray solid bars = distribution of the variable in the whole universe.

Visualization of clusters

- Categorical variables are shown as pie charts.
- Inner pie = distribution of the categories for the current cluster
- outer ring = distribution of the variable for the entire universe.
- The more different the cluster distribution is from the average, the more interesting or distinct the cluster.

Output of demographic clustering

Qualitative characterization of clusters

 Gold98 is a binary variable that indicates the best customers in the database, created previously by the business using RFM analysis.

The clustering model agrees very well with this existing definition: Most of the clusters seem to have almost all Gold or no Gold customers.

Confirmed the current Gold segment!

14/05/15

Qualitative characterization of clusters

- Our clustering results
 - not only validate the existing concept of Gold customers,
 - they extend the idea of the Gold customers by creating clusters within the Gold98 customer category.
 - A platinum customer group
- Cluster 5
 - almost all Gold98 customers, whose revenue, bonus collected lifetime to date, revenue per month, and lifetime to date per month are all in the 50th to 75th percentile.

Qualitative characterization of clusters

Cluster 3:

 no Gold98 customers. Its customer revenue, bonus collected, revenue per month, are all in the 25th to 50th percentile.

Cluster 5:

- 9 % of the population.
- revenue, bonus collected are all in the 75th percentile and above, skewed to almost all greater than the 90th percentile.
- looks like a very profitable cluster

Detailed view of cluster 5

Profiling clusters

Goal: assess the potential business value of each cluster quantitatively by profiling the aggregate values of the shareholder value variables by cluster.

CLUSTERID	REVENUE	CUSTOMERS	PRODUCT INDEX	LEVERAGE	TENURE
5	34.74%	8.82%	1.77	3.94	60.92
6	26.13%	23.47%	1.41	1.11	57.87
7	21.25%	10.71%	1.64	1.98	63.52
3	6.62%	23.32%	.73	.28	47.23
0	4.78%	3.43%	1.45	1.40	31.34
2	4.40%	2.51%	1.46	1.75	61.38
4	1.41%	2.96%	.99	.48	20.10
8	.45%	14.14%	.36	.03	30.01
1	.22%	10.64%	.00	.02	4.66

Table 1. Profiling a cluster.

14/05/15

Profiling clusters

- Ieverage = ratio of revenue to customer.
- Iuster 5 is the most profitable cluster.
- as profitability increases, so does the average number of products purchased.
- product index = ratio of the average number of products purchased by the customers in the cluster divided by the average number of products purchased overall.
- customer profitability increases as tenure increases.

14/05/15

Business opportunities

- Best customers in clusters 2, 5, and 7. :
 - indication: retention
- clusters 2, 6, and 0
 - indication: cross-selling by contrasting with clusters 5 and 7.
 - Clusters 2, 6, and 0 have a product index close to those of clusters 5 and 7, which have the highest number of products purchased.
- Try to convert customers from clusters 2, 6, and 0 to clusters 5 and 7. By comparing which products are bought we can find products that are candidates for cross-selling.

Business opportunities

Clusters 3 and 4 indication: cross-selling to clusters 2, 6, and 0 • Cluster 1 indication: wait and see. It appears to be a group of new customers Cluster 8 indication: no waste of marketing dollars 14/05/15

Follow-up

Reactions from The Loyalty Group

- visualization of results allowed for meaningful and actionable analysis.
- original segmentation methodology validated, but that refinements to the original segmentation could prove valuable.
- decision to undertake further data mining projects, including
 - predictive models for direct mail targeting,
 - further work on segmentation using more detailed behavioral data,
 - opportunity identification using association algorithms within the segments discovered.

