Data Mining

Knowledge Discovery in Databases

Fosca Giannotti and Dino Pedreschi Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://www-kdd.cnuce.cnr.it/

1

KDD Process Interpretation and Evaluation **Data Mining** Knowledge Selection and Preprocessing **p**(x)**≛**0.02 Data Patterns & Consolidation Models Prepared Data Warehouse Aprile 2008 solideted Data Mast Ass. 2 **Data Sources** Giannotti & Pedreschi

Association rules and market basket analysis

Market Basket Analysis: the context

Customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"

Market Basket Analysis: the context

Given: a database of customer transactions, where each transaction is a set of items

Find groups of items which are frequently purchased together

Goal of MBA

- Extract information on purchasing behavior
- Actionable information: can suggest
 - new store layouts
 - new product assortments
 - which products to put on promotion
- MBA applicable whenever a customer purchases multiple things in proximity
 - credit cards
 - services of telecommunication companies
 - banking services
 - medical treatments

MBA: applicable to many other contexts

Telecommunication:

Each customer is a transaction containing the set of customer's phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed event (rains, wind, etc.)

Etc.

Association Rules

- Express how product/services relate to each other, and tend to group together
- "if a customer purchases three-way calling, then will also purchase call-waiting"
- simple to understand
- actionable information: bundle three-way calling and call-waiting in a single package
- Examples.
 - **Rule form:** "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") ^ takes(x, "DB") → grade(x, "A") [1%, 75%]

8

Useful, trivial, unexplicable

- Useful: "On Thursdays, grocery store consumers often purchase diapers and beer together".
- Trivial: "Customers who purchase maintenance agreements are very likely to purchase large appliances".
- Unexplicable: "When a new hardaware store opens, one of the most sold items is toilet rings."

Giannotti & Pedreschi

9

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{aligned} & \{\text{Diaper}\} \rightarrow \{\text{Beer}\}, \\ & \{\text{Milk, Bread}\} \rightarrow \{\text{Eggs,Coke}\}, \\ & \{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\}, \end{aligned}$

Implication means co-occurrence, not causality!

10

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - ✓ Example: {Milk, Bread, Diaper}
 - k-itemset
 - \checkmark An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. σ({Milk, Bread, Diaper}) = 2
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) =
 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

train Frain $\begin{cases} Example: \\ {Milk, Diaper} &\Rightarrow Beer \end{cases}$ $s = \frac{\sigma(Milk, Diaper, Beer)}{|T|} = \frac{2}{5} = 0.4$ $c = \frac{\sigma(Milk, Diaper, Beer)}{\sigma(Milk, Diaper)} = \frac{2}{3} = 0.67$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence > minconf threshold

Brute-force approach:

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds
- \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Basic Apriori Algorithm

Problem Decomposition

- Sind the *frequent itemsets*: the sets of items that satisfy the support constraint
 - A subset of a frequent itemset is also a frequent itemset,
 i.e., if {A, B} is a frequent itemset, both {A} and {B} should
 be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Our Use the frequent itemsets to generate association rules.

Frequent Itemset Generation

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Apriori Execution Example (min_sup = 2)

Multidimensional AR

Associations between values of different attributes :

CID	nationality	age	income
1	Italian	50	low
2	French	40	high
3	French	30	high
4	Italian	50	medium
5	Italian	45	high
6	French	35	high

RULES:

nationality = French \Rightarrow income = high [50%, 100%]income = high \Rightarrow nationality = French [50%, 75%]age = 50 \Rightarrow nationality = Italian [33%, 100%]

merarchy of concepts

