Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
 - **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

 p1
 p2
 p3
 p4
 p5

p1

Intermediate Situation

□ After some merging steps, we have some clusters

	C1	C2	C3	C4	C5
C1					
C2					
C3					
C4					
C5					

Proximity Matrix

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

I The question is "How do we update the proximity matrix?"

Proximity Matrix

- I MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

MAX

- Group Average
- Distance Between Centroids

- **Proximity Matrix**
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Π
- MAX
- Group Average
- **Distance Between Centroids**
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

58

- I MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	1	12	13	4	15
11	1,00	0,90	0,10	0,65	0,20
12	0,90	1,00	0,70	0,60	0,50
13	0,10	0,70	1,00	0,40	0,30
14	0,65	0,60	0,40	1,00	0,80
15	0,20	0,50	0,30	0,80	1,00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

e ran,otembach, Ruma	C	Tan	,Steii	nbach,	Kuma
----------------------	---	-----	--------	--------	------

Introduction to Data Mining

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

© Tan, Steinbach, Kumar

Introduction to Data Mining

Limitations of MIN

Original Points

- Sensitive to noise and outliers
 - Particular case: chain effect

Introduction to Data Mining

64

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

_	11	12 I	3	4	15
11	1,00	0,90	0,10	0,65	0,20
12	0,90	1,00	0,70	0,60	0,50
13	0,10	0,70	1,00	0,40	0,30
14	0,65	0,60	0,40	1,00	0,80
15	0,20	0,50	0,30	0,80	1,00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points

Two Clusters

Less susceptible to noise and outliers

© Tan, Steinbach, Kumar

Introduction to Data Mining

4/18/2004 67

Limitations of MAX

Original Points

Two Clusters

•Tends to break large clusters

•Biased towards globular clusters

© Tan, Steinbach, Kumar

Introduction to Data Mining

68

Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(C_i, C_j) = \frac{\sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} proximity(\mathbf{x}, \mathbf{y})}{m_i * m_j}$$

Need to use average connectivity for scalability since total proximity favors large clusters

_	1	12	13	4	15
11	1,00	0,90	0,10	0,65	0,20
12	0,90	1,00	0,70	0,60	0,50
13	0,10	0,70	1,00	0,40	0,30
14	0,65	0,60	0,40	1,00	0,80
15	0,20	0,50	0,30	0,80	1,00

69

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space

requirements

- $O(N^2)$ space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the proximity matrix (size: O(N²)) must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Single-link HAC vs Graphs

Single-link HAC vs Graphs

Complete-link HAC vs Graphs

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not

Add q to the tree and put an edge between p and q

© Tan,Steinbach, Kumar

Introduction to Data Mining

79

MST: Divisive Hierarchical Clustering

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

