Classification in Mobility
Data Mining



Activity Recognition -
Semantic Enrichment



Recognition through
Points-of-Interest

Given a dataset of GPS tracks of private vehicles, we annotate trajectories
with the most probable activities performed by the user.
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The method associates the list of possible PQOls (with corresponding
probabilities) visited by a user moving by car when he stops.

A mapping between POls categories and Transportation Engineering activities
IS necessary.




The enrichment process

POI collection: Collected in an automatic way, e.g. from Google
Places.

Association POl - Activity: Each POl is associated to a
“activity". For example Restaurant — Eating/Food, Library —
Education, etc.

Basic elements/characteristics:
- C(POI) = {category, opening hour, location}
- C(Trajectory) = {duration of the stop, stop location, time of the day}
- C(User) = {max walking distance}

Computation of the probability to visit a POI/ to make an
activity: For each POI, the probability of “being visited" is a
function of the POI, the trajectory and the user features.

Annotated trajectory: The list of possible activities is then
associated to a Stop based on the corresponding probability of
visiting POls



Input & Output
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Input & Output
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Inferring Activities from social data




Extraction of personal places from Twitter trajectories
iIn Dublin area

The points of each trajectory taken separately were grouped into spatial clusters of maximal radius 150m. For groups with at least 5
points, convex hulls have been built and spatial buffers of small width (5m) around them.
1,461,582 points belong to the clusters (89% of 1,637,346); 24,935 personal places have been extracted.
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Recognition of the message topics, generation of topical feature
vectors, and summarization by the personal places

Topics have been assigned to 208,391 messages (14.3% of the 1,461,582 points belonging to the personal places)

@joe_lennon | usually|education
@joe_lennon together|education
@jas_103 deadly, don|work

Just got hame and sedhome

So excited ahout my ndsweets
@lamtcdizzy | haven't lshopping

Getin from my night odfamily;home;work
Home again at Gpml Mhame

Bussing it home for ti Getin frorn ray night out; my dad gets home fmm work
Ah shite. Its been a p Mo minutes later. Great timing )

@ronanhutchinson beleducation | o]

1) Some places did not get topic summaries (about 20% of the places)

2) In many places the topics are very much mixed

3) The topics are not necessarily representative of the place type
(e.g., topics near a supermarket: family, education, work, cafe,
shopping, services, health care, friends, game, private event, food,
sweets, coffee)



Obtaining daily time series of place visits and comparison with
exemplary temporal profiles

The daily time series of place visits have been obtained through aggregation of daily trajectories using only relevant places for each
trajectory. The aggregation was done separately for the work days from Monday to Thursday, and for Saturday, Sunday, and Friday.

xemplary temporal profiles of different activities
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The time series of place visits are compared to the exemplary time profiles by means of the Dynamic Time Warping (DTW) distance
function. Resulting scores: from 0 (no similarity) to 1 (very high similarity).

15,950 places (64% of all) have no similarity to any of the exemplary time patterns. 4,732 places (19%) have the maximal similarity
score of 0.8 or higher; 4,179 of them (16.8% of all) were visited in 6 or more days.



Time series with high similarity to
“‘work” (>=0.8

N visits by hours, work days (1-4)
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1,520 places (6.1% of all). These places have also high similarity

to “education”, “transport”, and “lunch”.

In 233 places out of the initial 1,520 (15%, 0.9% of
all places) the similarity to the “work” profile has
been reinforced based on the topic frequencies.

M visits by hours, work days (1-4)

The time series similarity scores have been
combined with the relative frequencies of the
topics using a combination matrix

M visits by hours, Saturday

r
18.00

N
e .
e
| |

=

0 % 4 & B Y012 14 1618 20

0.00

T
22

r
19.00

0.00




Classification of the places according to the highest combined
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score (minimum 0.8)
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20,247 places (81.2%) are not classified; 4,688 (18.8%) are classified, of them 4,048 (16.2%) were visited in at least 6 days




Activity Recognition
- Inductive approach



Eigen-behaviours

INn

put

Left: subject’s behavior over the course of 113 days for five
situations / activities

Right: same data represented as a binary matrix of 113 days (D)
by 120 (H, which is 24 multiplied by the five possible situations)
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Eigen-behaviours
Method

Are there key activity distributions from which to infer all others
through linear combination?

Same idea as PCA

Key
distributions

Sample Days

P . -
home  office elsewhere nosig of
Location




Eigen-behaviours

= Set of 3 representative eigen-behaviours

= Each user's activity can be rewritten as their linear combination

activities
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Individual Mobility Networks



How to synthesize Individual Mobility?

Mobility Data Mining
methods
automatically extract
relevant episodes:
locations and
movements.




Rank individual preferred
locations




How to synthesize Individual Mobility?

Graph abstraction
based on locations
(nodes) and
movements (edges)




How to synthesize Individual Mobility?

High level
representation

Aggregation of
sensitive data

Abstraction from real
geography




From raw movement...

©



... to annotated data

©




The ABC classifier

1) Build from data an
Individual Mobility Network (IIMN)

2) Extract structural features from the
IMN

3) Use a cascading classification with label
propagation (ABC classifier)



Extracting the IMN




Extracting the IMN

@ centrality
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Extracting the IMN
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ABC Classifier

* Principles:

— The activities of a user should be predicted as a
whole, not separately

- Some activities are easy to classify

— Other activities might benefit from contextual
information obtained from previous predictions

* E.g.: a place frequently visited after work
might be more likely to be leisure / shopping
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ABC Classifier

* Inspired by Nested Cascade Classification
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ABC Classifier

Annotated Set
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The ABC classifier
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The ABC classifier
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The ABC classifier

®
5 g
™ e
®@ @®
®  ®
ONNG ®
o ° © © ©
® Oty
koo LN
@m@ @)
®® A
o o
o5 © @
®
@ © @

O,



The ABC classifier
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Experiments
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% trips

Semantic Mobility Analytics

 Pisa traffic

Temporal Analysis
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% trips

Semantic Mobility Analytics

Temporal Analysis

e Calci traffic
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Semantic Mobility Analytics

Temporal Analysis
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User Profiling

in computer science, is the process of
construction and extraction of models
representing user behavior generated by
computerized data analysis.

'‘Are employed to study, analyze and understand
human behaviors and interactions.

'Are exploited by many applications to make
predictions, to give suggestions etc.




MYWay:
Trajectory Prediction



Individual and Collective Profile

'Individual Profile 'Collective Profile
'Input: Individual Data 'Input: Collectivity Data
'Output: Individual Patterns 'Output: Collective Patterns




Prediction using probability mixture models

Weekend Profile |
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J. Ghosh, M. J. Beal, H. Q. Ngo, and C. Qiao. On profiling mobility and
predicting locations of wireless users. 2006.
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J. Ghosh, H. Q. Ngo, and C. Qiao. Mobility profile based routing within
intermittently connected mobile ad hoc networks (icman). 2006.

I. F. Akyildiz and W. Wang. The predictive user mobility prole framework for
wireless multimedia networks. 2004.



Prediction based on individual and
collective preferences
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F. Calabrese, G. Di Lorenzo, and C. Ratti. Human mobility prediction based on
individual and collective geographical preferences. 2010.



Prediction using complex networks and
probability

-« Nodes connected in a graph G
—— (Common nodes

The two paths Follow

Similarity conditions

Clique 2=0C,

D. Barth, S. Bellahsene, and L. Kloul. Mobility prediction using mobile user profiles. 2011.

D. Barth, S. Bellahsene, and L. Kloul. Combining local and global proles for mobility
prediction in Ite femtocells. 2012.



Collective prediction

u

_/begin

sing t-patterns

Root

T

{1,C,35) ( 4,A,31) { 11, B,

[15,2(/ \[10,12] [4,2/ [70,00]

{2, B, 20)(3 D, 35 (5 A, 26)( 6, C, 21) (9, B, 31)( 12, E, 38) ( 14, D, 37)

[10, 12/ \[10 20] [10,56]

(7, D, 21y ( 8, B, 10) ( 10, E, 21)

28) ( 13,F,37 )

[8,70] [2,51]

// 3
p

ids end+tht

node.r

p_score = node support p_score = node support /(P*d_t+ckd_s)

p_score = node support/*d_t
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Mobility Profiling

A concise model ables to describe the user’'s mobility in
terms of representative movements, i.e. routines.

This model is called Mobility Profile.

Mining mobility user profiles for car pooling. Trasarti, Pinelli, Nanni,
Giannotti. KDD 2011



Derived patterns and models: mobility
profiles

time
—d
1

Profile
extraction

User history

Trips construction

Grouping Pruning

An ordered
sequence of spatio-

Cutting the user history when a
stop is detected

Performing a density based

_ _ Groups with a small
clustering equipped with a

Number of trips are The medoid of each

temporal points. spatio temporal distance Pruned group becomes user’s
function routines and the all
set become the user’'s
mobility profile
Spatial Tollerance
Stops Spatial Threshold Temporal Tollerance Support Threshold

Stops Temporal Threshold Spatio temporal distance

Trasarti, Pinelli, Nanni, Giannotti.
Mining mobility user profiles for car pooling. ACM SIGKDD 2011



ldea In a nutshell

Use the mobility profile to predict the user’s movements. If it is not able to
produce a prediction, a collective predictor is used.
The collective predictor is built using the mobility profiles of the crowd.
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Experimental setting

Starting from a dataset of 1 month of movements,
5.000 users and 326.000 trajectories. We divided
the training set, i.e. 3 weeks and as test set the
remaining last week.

The trajectories in the test set are cut to become the
qgueries for the predictor. The cuts tested are taking
the first 33% or 66% of the trajectories.



Extracting the Mobillity Profiles

The first step is to extract the mobility profiles from
the training set. In order to assess the quality of
them an empirical analysis is performed.
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Results

MyWay obtains good results which are comparable to a global
predictor built on top of the whole set of trajectories.
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CARPOOLS ONLY
> OR MORE PERSONS "

PER VEHICLE

) 4

proactive car pooling




Carpooling cycle
Context

* Several initiatives, especially on the web
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Carpooling cycle

Distinctive features

Traditional approach VS. ICON cycle
Users manually insert ~* System autonomously
and update their rides - detect systematic trips

Users search and

. * System automaticall
contact candidate pals . 4 y

suggest pairings

Users make individual,
“local” choice * System seeks globally

optimal allocation




Carpooling cycle

Assumptions

QUsers provide access to their mobility




Carpooling cycle

-Step L. lnferring lndividual Systematic Mobility

- Extraction of Mobility Profiles

Describes an abstraction in space and time of
the systematic movements of a user.

Exceptional movements are completely

ignored.

Based on trajectory clustering with noise
removal | .
Individual History Trajectory Clusters Routines

\i/ZQ/




Carpooling cycle
Step 2: Build Network of possible carpool matches

Based on “routine containment” “assenger

One user can pick .Spatl lﬁl
up the otheralong = & "
his trip

)I driver

n"

Carpooling network | 'i'
Nodes = users o)t T
v-' ry¥ (r3*,r.")
Edges = pairs of users . & w3 nd \

with matching routines 'W o J ;m w



Application: Car pooling

Pro-active suggestions of sharing rides opportunities without the need for the
user to explicitly specify the trips of interest.
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Carpooling cycle
Step 3. Optimal allocation of drivers-passengers

* Given a Carpooling Network N, select a
subset of edges that minimizes ||

— S = set of circulating vehicles

provided that the edges are coherent, i.e.: ﬂ

— indegree(n)=0 OR outdegree(n)=0 N
(a driver cannot be a passenger)

— indegree(n) < capacity(n) @




Carpooling cycle
The “simple” ICON Loop

Users accep
sugges

O

CP: Optimal allocation

DM: Extract

N\ (') mobility profiles

Build Carpooling netwo




Carpooling cycle

lprovement

In carpooling (especially if proactive)
users might not like the suggested
matches

Impossible to know who will accept a given
match

Modeling acceptance might improve results

Two new components

Learning mechanism to guess success
probability of a carpooling match

Optimization task exploits it to offer
solution with best expected overall success




Carpooling cycle
Revised ICON Loop
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Networks as a mining tool

S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, F. Giannotti

Discovering the Geographical Borders of Human Mobility
Kl - Kinstliche Intelligenz, 2012.



Mobility coverages




Step 1: spatial regions




IONS

evaluate flows among reg

Step 2




Step 3: forget geography




Step 4: perform community detection




Step 4: perform community detection




Step 5: map back to geography




Step 6: draw borders




Final result




Final result: compare with municipality
borders




Borders In different time

Only weekdays movements

Rl Guardigallo

Similar to global clustering: strong
influence of systematic movements

Only weekend movements

Strong fragmentation: the influence of
systematic movements (home-work) is
missing
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Final results




Comparison with “new
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