Università di Pisa	A.A. 2016-2017
--------------------	----------------

Data Mining II

June 6th, 2017

mid-term exam

Exercise 1 - Classification (13 points)

a) Naive Bayes (6 points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

А	В	С	class
high	no	green	Y
medium	no	red	Y
low	yes	green	N
high	no	red	Ν
low	yes	red	Y
high	no	green	Y
medium	yes	green	N

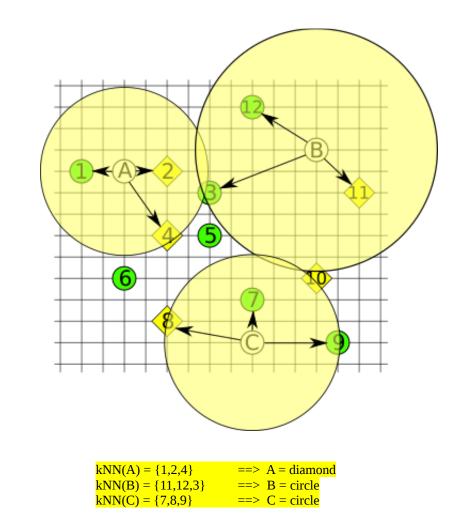
A	В	С	class
low	no	red	
high	yes	green	
medium	yes	red	

Model probabilities

	Y	/	N
		0.57	0.43
	AIY	A	N
high		0.50	0.33
medium		0.25	0.33
low		0.25	0.33
	B Y	B	N
yes		0.25	0.67
no		0.75	0.33
	C Y	C	N
green		0.50	0.67
red		0.50	0.33

Predictions

		low	no	red	
Y	0.57	0.25	0.75	0.50	0.05
N	0.43	0.33	0.33	0.33	0.02
		high	yes	green	
Y	0.57	0.50	0.25	0.50	0.04
N	0.43	0.33	0.67	0.67	0.06
		medium	yes	red	
Y	0.57	0.25	0.25	0.50	0.02
N	0.43	0.33	0.67	0.33	0.03


Output: Y, N, N

==>

b) k-NN (6 points)

Given the training set below, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3. For each point to classify, list the points of the dataset that belong to its k-NN set.

KNNs:

Results:

c) Ensembles (1 point)

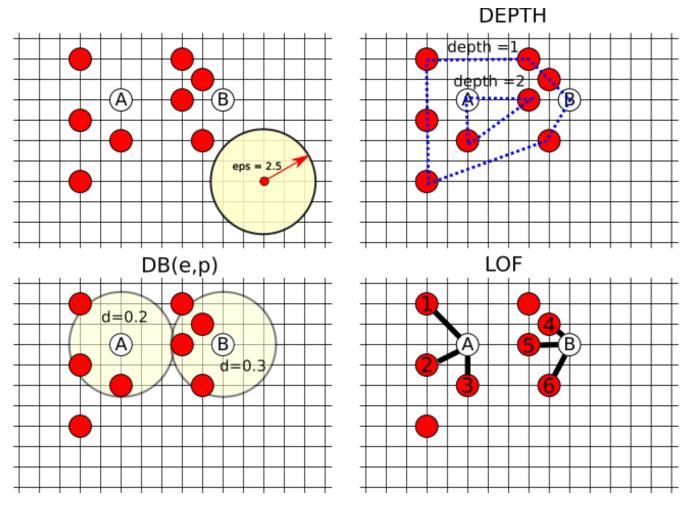
For a binary classification problem (target values: Y and N) we are able to extract 1000 independent models, although each of them has a very poor classification, i.e. error = 50%. What is the accuracy that a bagging approach can achieve?

Answer: feeding the formula for the global error of the ensemble model with epsilon = 0.5, we get that the overall error is again 0.5. Indeed, each of the 2^1000 possible configurations of outcomes of the 1000 base models (e.g. < M1=right, M2=right, M3=wrong, ... M1000=right>) have the same probability 0.5^1000. Since for each configuration where the "correct" models win there is one (for instance, the complementary one) where they loose, it happens that the probability of having a successful configuration is the same as having a failure. More intuitively: a model with 0.5 corresponds to throwing a coin. Throwing it 1000 times does not help to predict anything.

Exercise 2 - Outlier Detection (12 points)

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: DB(ϵ , π) (4 points) Are A and/or B outliers, if thresholds are forced to ϵ = 2.5 and π = 0.25 ?

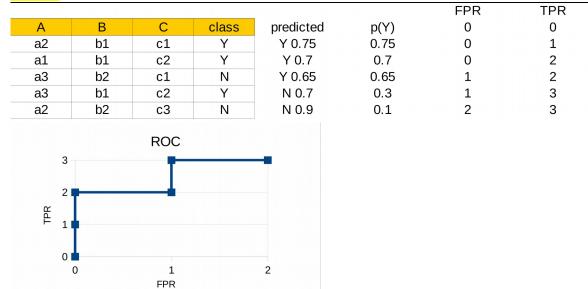

Answer: A is an outlier, B is not. See figure.

b) Density-based: LOF (4 points) Compute the LOF score for points A and B by taking k=3, i.e. comparing each point with its 3 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

Answer: see 3-Nns for A and B in the figure. LOF(A) is lower than LOF(B).

c) Depth-based (4 points) Compute the depth score of points A and B.

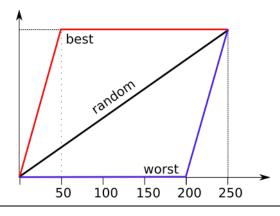
Answer: $A \rightarrow 2$, $B \rightarrow 1$. See figure.



a) ROC curve (6 points)

Given the following decision tree on left, where the leaves also show the confidence of each prediction, and given the test set on the right, build the corrisponding ROC curve.

	А	В	С	class
A=a1 A=a3	a2	b1	c1	Y
A=a2	a3	b1	c2	Y
	a3	b2	c1	Ν
B=b1 B=b2 C=c2 B=b1 B=b2	a2	b2	c3	Ν
Y N Y Y N N Y conf.=0.7 conf.=0.6 conf.=0.7 conf.=0.7 conf.=0.65	a1	b1	c2	Y


Answer:

b) Lift charts (**1 points**)

We have a test set containing 200 negative cases and 50 positive ones. Plot the lift charts we would obtain by applying to our test set (i) a perfect scoring/classification model, (ii) a random model, (iii) the worst possible model.

Answer:

