Università di Pisa	A.A. 2018-2019

Data Mining II

June 6th, 2019

2nd mid-term exam

Exercise 1 - Classification (13 points)

a) Naive Bayes (6 points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

Income	Loan	Works	class				
high	no	yes	Y]			
medium	no	yes	N				
low	yes	no	N	Income	Loan	Works	class
medium	no	no	Y	low	no	no	
high	yes	no	N	high	no	yes	
low	yes	no	Y	medium	yes	yes	
low	no	yes	Y				

b) k-NN (6 points)

Given the training set below, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3. For each point to classify, list the points of the dataset that belong to its k-NN set.

c) Ensemble mathods (1 point)

When using AdaBoosting, the number of weak classifiers to use is a parameter of the method. What happens to the accuracy of the strong model produced when that number becomes very large? Why?

Exercise 2 - Outlier Detection (12 points)

Given the dataset of 10 points below (all positioned at an intersection of the regular grid depicted), consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: $DB(\varepsilon, \pi)$ (4 points)

Are A and/or B outliers, if thresholds are forced to ε = 2.5 and π = 0.35? (Notice that in computing the density of a point, the point itself should not be counted)

b) Density-based: LOF (**4 points**) Compute the LOF score for points A and B by taking k=2, i.e. comparing each point with its 2-NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (4 points)

Compute the depth score of points A and B.

Exercise 3 - Validation (7 points)

a) ROC curve (6 points)

Given the following test set with the predictions (and associated confidence) returned by our model, build the corrisponding ROC curve.

Record	Real Class	Predicted		
row 1	Y	Y	0.74	
row 2	Y	Y	0.88	
row 3	N	N	0.77	
row 4	Y	N	0.66	
row 5	Y	Y	0.92	
row 6	N	N	0.99	
row 7	Y	N	0.82	
row 8	N	N	0.93	
row 9	N	Y	0.98	
row 10	N	Y	0.95	

b) AUC (1 points)

Assume to have a trivial classifier that always predicts "Y" with 100% confidence. What is its AUC (area under the ROC curve) on the test set above?