Pattern Mining

- Determine what items often go together (usually in transactional databases)
- Often Referred to as Market Basket Analysis
 - used in retail for planning arrangement on shelves
 - used for identifying cross-selling opportunities
 - "should" be used to determine best link structure for a Web site
- Examples
 - people who buy milk and beer also tend to buy diapers
 - people who access pages A and B are likely to place an online order
- Suitable data mining tools
 - association rule discovery
 - clustering
 - Nearest Neighbor analysis (memory-based reasoning)

Market Basket Analysis: the context

6

Customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"

Events or combinations of events that appear frequently in the data

□ E.g. items bought by customers of a supermarket

Frequent itemsets w.r.t. minimum threshold

Association rules

- If items A1, A2, ... appear in a basket, then also B1,
 B2, ... will appear there
- Notation: A1, A2, ... => B1, B2, ... [C%]

C = confidence, i.e. conditional probability

Complex domains

Frequent sequences (a.k.a. Sequential patterns)

□ Input: sequences of events (or of groups)

Complex domains

Objective: identify sequences that occur frequently

• Sequential pattern: { 🕥 🥝 🔶 🗔

Transaction data: supermarket data

12

- Market basket transactions:
 - t1: {bread, cheese, milk}
 - t2: {apple, eggs, salt, yogurt}
 - tn: {biscuit, eggs, milk}

Concepts:

. . .

An item: an item/article in a basket

. . .

- I: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Transaction data: a set of documents

13

A text document data set. Each document is treated as a "bag" of keywords

- doc1: Student, Teach, School
- doc2: Student, School
- doc3: Teach, School, City, Game
- doc4: Baseball, Basketball
- doc5: Basketball, Player, Spectator
- doc6: Baseball, Coach, Game, Team
- doc7: Basketball, Team, City, Game

The model: rules

- □ A transaction *t* contains X, a set of items (itemset) in *I*, if $X \subseteq t$.
- □ An association rule is an implication of the form: $X \rightarrow Y$, where X, Y ⊂ I, and X ∩ Y = Ø
- An itemset is a set of items.
 E.g., X = {milk, bread, cereal} is an itemset.
 A *k*-itemset is an itemset with *k* items.
 E.g., {milk, bread, cereal} is a 3-itemset

Association Rules: measures

 $\mathsf{X} \Rightarrow \mathsf{Y} \ [\ \mathsf{s}, \mathsf{c} \]$

Support: denotes the frequency of the rule within transactions. A high value means that the rule involve a great part of database. (HOW POPULAR IS THE GROUP)

 $support(X \Rightarrow Y) = Pr(X \cup Y)$

Confidence: denotes the percentage of transactions containing X which contain also Y. It is an estimation of conditioned probability . **(how likely is Y given X)**

Confidence($X \Rightarrow Y$) = Pr(Y|X) = Pr(X & Y)/Pr(X).

Rule strength measures

- 16
- □ Support: The rule holds with support <u>sup</u> in *T* (the transaction data set) if <u>sup</u>% of transactions contain $X \cup Y$.

 $\Box \underline{sup} = \Pr(X \cup Y).$

Confidence: The rule holds in T with confidence <u>conf</u> if <u>conf</u>% of transactions that contain X also contain Y.

 $\Box \underline{conf} = \Pr(Y \mid X)$

An association rule is a pattern that states when X occurs, Y occurs as well with a certain probability.

Support and Confidence

Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X. Assume T has n transactions.

□ Then, $support = \frac{(X \cup Y).count}{n}$ $confidence = \frac{(X \cup Y).count}{X.count}$

Valid rules

Valid rules: all rules that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf).

Key Features

Completeness: find all rules.

No target item(s) on the right-hand-side

□ An example frequent itemset:

{Chicken, Clothes, Milk} [sup = 3/7]

Association rules from the itemset:

Clothes \rightarrow Milk, Chicken [sup = 3/7, conf = 3/3] Clothes, Chicken \rightarrow Milk, [sup = 3/7, conf = 3/3]

Association Rules: measures Meaning

$\mathsf{X} \Rightarrow \mathsf{Y} [\mathsf{s}, \mathsf{c}]$

Support: denotes the frequency of the rule within transactions. A high value means that the rule involve a great part of database. (HOW POPULAR IS THE GROUP)

 $support(X \Rightarrow Y) = Pr(X \& Y)$

Confidence: denotes the percentage of transactions containing X which contain also Y. It is an estimation of conditioned probability . **(how likely is B given A)**

Confidence($X \Rightarrow Y$) = Pr(Y|X) = Pr(X & Y)/Pr(X).

Support and Confidence

Association Rules – the effect

conf(a => b) = 100% conf(b => a) = ~ 0%

conf(a => b) = ~ 0% conf(b => a) = ~ 0%

conf(a => b) = ~ 0% conf(b => a) = 100%

conf(a => b) = ~100% conf(b => a) = ~100%

Association Rules – the parameters σ and γ

23

Minimum Support σ :

- **High** \Rightarrow few frequent itemsets
 - \Rightarrow few valid rules which occur very often
- **Low** \Rightarrow many valid rules which occur rarely

Minimum Confidence γ :

High \Rightarrow few rules, but all "almost logically true" **Low** \Rightarrow many rules, but many of them very "uncertain"

 $Low \Rightarrow$ many rules, but many of them very uncertained

Typical Values: $\sigma = 2 \div 10 \%$

 $\gamma = 70 \div 90 \%$

Other interest measures

- Problem: confidence does not take into account the popularity of the consequent.
- $\square INTEREST = Pr(X \& Y)/P(X)*P(Y)$
 - □ How likely is Y given X, while controlling the popularity of Y
- Interest expresses measure of correlation

■ = 1 ⇒ X and Y are independent events (the rule does not make sense)

I less than $1 \Rightarrow X$ and Y negatively correlated,

greater than 1 \Rightarrow X and Y positively correlated

Other measures

 $\Box \underline{Val} = \Pr(Y \mid X) - \Pr(Y) = \text{Confidence} - \Pr(Y)$

LIFT = Pr(Y | X) / Pr(Y) = Confidence / Pr(Y)

Association Rules – visualization

25

(Patients <15 old for USL 19 (a unit of Sanitary service), January-September 1997)

Visualization of Association Rules: Plane Graph

