Ex. Frequent Pattern

Dataset

- $1. \qquad \{A,B,C\}$
- 2. {B,C,D}
- 3. {C,D}
- 4. $\{A,B,D,E\}$
- 5. $\{A, E\}$
- 6. $\{A,B,C,E\}$
- 7. $\{C,D,E\}$
- 8. $\{E,F\}$
- 9. $\{B,E,F\}$
- 10. {B,C,D,E}
- a) Extract frequent pattern with minimum support equal to 30%
- b) Extract Association Rules with minimum confidence equal to 70%
- c) Compute the interest of the rules extracted in b)

Ex. Classification

Consider the following datasets: training (left), test (right)

	Minutes	Internet	Giga	ChangeContract		Minutes	Internet	Giga	ChangeContract
0	210	4G	<10	NO	0	160	3G	<10	NO
1	120	3G	>10	YES	1	150	3G	>10	YES
2	200	4G	>10	NO	2	220	3G	<10	NO
3	160	3G	<10	YES	3	120	4G	>10	NO
4	125	4G	>10	NO	4	125	4G	>10	YES
5	150	3G	>10	YES					
6	220	4G	<10	NO					
7	120	4G	>10	NO					
8	150	3G	>10	YES					
9	220	3G	<10	NO					

Use the training dataset for building a decision tree based on misclassification rate for the variable "ChangeContract", expanding the nodes of the tree until the precision is not improved locally, i.e., no split provides a gain.

Use the test set to provide the confusion matrix and to evaluate the accuracy, precision and recall of the tree. Provide the formula of each evaluation measure.