Given the following points compute the distance matrix by using

- a) Manhattan distance (provide the formula)
- b) Euclidean distance (provide the formula)
- c) Supremum distance (provide the formula)

Points	Х	Υ
P1	6	3
P2	2	2
Р3	3	4

Solution:

a) The Manhattan distance is obtained setting r=1 in the Minkowski distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

L1	P1	P2	P3
P1	0	5	4
P2	5	0	3
Р3	4	3	0

b) The Euclidean distance is obtained setting r=2 in the Minkowski distance

L2	P1	P2	P3
P1	0.000	4.123	3.162
P2	4.123	0.000	2.236
Р3	3.162	2.236	0.000

c) The Euclidean distance is obtained setting $r=\inf$ in the Minkowski distance

Linf	P1	P2	Р3
P1	0.000	4.000	3.000
P2	4.000	0.000	2.000
Р3	3.000	2.000	0.000

Given the following table compute the correlation matrix.

AGE	INCOME	EDUCATION	HEIGHT
10	0	4	130
20	15000	13	180
28	20000	13	160
35	40000	18	150
40	38000	13	170

Solution:

AVG AGE: 26.6 **STD AGE** 11.9498954

AVG INCOME 22600 **STD INCOME** 16697.30517

AVG EDU 12.2 **STD EDU** 5.069516742

AVG EDU 158 **STD EDU** 19.23538406

	INCOME-		HEIGTH-
AGE-AVG	AVG	EDU-AVG	AVG
-16.6	-22600.00	-8.2	-28
-6.6	-7600.00	0.8	22
1.4	-2600.00	0.8	2
8.4	17400.00	5.8	-8
13.4	15400.00	0.8	12

Corr(Age,Icome)= ((-16.6*-22600)+(-6.6*-7600)+(1.4*-2600)+(8.4*17400)+(13.4*15400))/4*11.9498954* 16697.30517 = 0.97

...

CORRELATION	AGE	INCOME	EDUCATION	HEIGHT
AGE	1.00	0.97	0.79	0.45
INCOME	0.97	1.00	0.86	0.39
EDUCATION	0.79	0.86	1.00	0.54
HEIGHT	0.45	0.39	0.54	1.00

Given the following two vectors compute the cosine similarity

Solution

D1 • **D2** =
$$4*2 + 0*0 + 2*0 + 0*2 + 1*2 = 10$$

||**D1**|| = $(4^2 + 2^2 + 1^2)^{0.5}$ = $(16+4+1)^{0.5}$ = $21^{0.5}$ = 4.58
||**D2**|| = $(2^2 + 2^2 + 2^2)^{0.5}$ = $(4+4+4)^{0.5}$ = $12^{0.5}$ = 3.46

$$COS(D1,D2) = (D1 \cdot D2)/(||D1|| * ||D2||) = 10/(4.58*3.46) = 0.63$$

Exercise 4

Given the following two binary vectors compute the Jaccard and Simple Matching Coefficient:

$$p = 001101$$

 $q = 111101$

Solution

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 0$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 1$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 3$ (the number of attributes where p was 1 and q was 1)

$$\mathsf{SMC} = (\mathsf{M}_{11} + \mathsf{M}_{00}) / (\mathsf{M}_{01} + \mathsf{M}_{10} + \mathsf{M}_{11} + \mathsf{M}_{00}) = (3+1) \, / \, (2+0+3+1) = 4/6 = 0.67$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 03/(2 + 3) = 3/5 = 0.6$$

Apply discretization on the attribute AGE and provide the corresponding histogram by using: a) Natural Binning with number of classes K=5 and b) Equal-frequency binning with number of classes K=3.

AGE: 10,10,15,28,30,20,80,60,30,35,70,5

SOLUTION

a) Natural Binning with number of classes K=5

delta = (max - min)/K = (80-5)/5=15

C1: [5,20)

C2: [20,35)

C3: [35,50)

C: [50,65)

C5: [65,80]

b) Equal-frequency binning with number of classes K=3.

$$F = N/K = 12/3 = 4$$

C1: {5,10,10,15}

C2: {20,28,30,30}

C3: {35,60,70,80}

