Exercises on Sequential pattern mining

Ex. 1

< {A}	{ A,B,F }	{ B ,F}	{E,F}	{G}	{A}	{A,B}	{E} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering max-gap = 2 (i.e. gap \leq 2, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g.: $\langle 0,2,3 \rangle = \langle t=0, t=2, t=3 \rangle$.

Solutions are highlighted in yellow:

	Occurrences	<i>Occurrences with max-gap</i> = 2
<i>ex.:</i> <{B}{E}>	<1,3> <1,7> <2,3><2,7><6,7>	<1,3> <2,3><6,7>
$w_1 = \langle \{A\} \{B\} \{E\} \rangle$	<pre><0,1,3><0,1,7><0,2,3> <0,2,7><0,6,7> <1,2,3> <1,2,7><1,6,7> <5,6,7></pre>	<mark><0,1,3><0,2,3></mark> <1,2,3> <5,6,7>
$w_2 = \langle B \} \{G \} \{A \} \rangle$	<mark><1,4,5><1,4,6></mark> <2,4,5> <2,4,6>	<mark><2,4,5> <2,4,6></mark>
$w_3 = \langle \{A,B\} \{E\} \rangle$	<mark><1,3> <1,7></mark> <mark><6,7></mark>	<mark><1,3></mark> <mark><6,7></mark>

Ex. 2

Given the input sequences listed in the table below (column 1), show for each of them **all the occurrences** of subsequences $\{A\} \rightarrow \{D\}$ and $\{A\} \rightarrow \{C,D\}$, and finally write its total support. Repeat the exercise twice: the first time **considering no temporal constraints** (columns 2 and 4); the second time **considering min-gap = 1** (i.e. gap > 1) (columns 3 and 5). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

column 1	column 2	column 3	column 4	column 5
	$\{A\} \rightarrow \{D\}$		$\{B\} \rightarrow \{C,D\}$	
	No constraints	min- $gap = 1$	No constraints	min-gap = 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<mark><0,2>, <0,4></mark>	<mark><0,2> <0,4></mark>	<mark><0,2>, <0,4></mark>	<mark><0,2>, <0,4></mark>
$< \{A,B\} \{C\} \{A,B\} \{C,D\} > t=0 t=1 t=2 t=3$	<mark><0,3> <2,3></mark>	<mark><0,3></mark>	<mark><0,3>, <2,3></mark>	<mark><0,3></mark>
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<mark><1,2> <1,3></mark> <2,3>	<mark><1,3></mark>	<mark><1,2></mark>	none
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<mark><0,4> <2,4></mark>	<mark><0,4> <2,4></mark>	none	none
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<mark><0,2> <0,4> <1,2>,</mark> <1,4> <2,4>	<mark><0,2> <0,4></mark> <1,4> <2,4>	<mark><0,4> <2,4></mark>	<mark><0,4> <2,4></mark>
Total support:	<mark>5 (100%)</mark>	<mark>5 (100%)</mark>	<mark>4 (80%)</mark>	<mark>3 (60%)</mark>