
AN ALTERNATIVE METHOD
FOR ASSOCIATION RULES

RECAP

Mining Frequent Itemsets
•  Itemset

•  A collection of one or more items
•  Example: {Milk, Bread, Diaper}

•  k-itemset
•  An itemset that contains k items

•  Support (σ)
•  Count: Frequency of occurrence of an itemset
•  E.g. σ({Milk, Bread,Diaper}) = 2
•  Fraction: Fraction of transactions that contain an itemset
•  E.g. s({Milk, Bread, Diaper}) = 40%

•  Frequent Itemset
•  An itemset whose support is greater than or equal to a minsup threshold,

minsup
•  Problem Definition

•  Input: A set of transactions T, over a set of items I, minsup value
•  Output: All itemsets with items in I having minsup

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

The itemset lattice
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are
2d possible itemsets
Too expensive to test all!

The Apriori Principle
•  Apriori principle (Main observation):

–  If an itemset is frequent, then all of its subsets must also
be frequent

–  If an itemset is not frequent, then all of its supersets
cannot be frequent

–  The support of an itemset never exceeds the support of
its subsets

–  This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀

Illustration of the Apriori principle

Found to be frequent

Frequent
subsets

Illustration of the Apriori principle

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned

Infrequent supersets

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",
Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm
Level-wise approach

Ck = candidate itemsets of size k
Lk = frequent itemsets of size k

Candidate
generation

Frequent
itemset

generation

1.  k = 1, C1 = all items
2.  While Ck not empty

3.  Scan the database to find which itemsets in
Ck are frequent and put them into Lk

4.  Use Lk to generate a collection of candidate
itemsets Ck+1 of size k+1

5.  k = k+1

Candidate Generation
• Basic principle (Apriori):

• An itemset of size k+1 is candidate to be frequent only if
all of its subsets of size k are known to be frequent

• Main idea:
• Construct a candidate of size k+1 by combining two

frequent itemsets of size k
• Prune the generated k+1-itemsets that do not have all

k-subsets to be frequent

Factors affecting the complexity
• Choice of minimum support threshold

•  lowering min support results in more frequent itemsets this may
increase number of candidates and max length of frequent itemsets

• Dimensionality (number of items of the dataset)
•  more space is needed to store support count of each item
•  if number of frequent items also increases, both computation and I/O

costs may also increase
• Size of database

•  since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

• Average transaction length
•  transaction length increases with denser data sets
•  this may increase max length of frequent itemsets and traversals of

hash tree (number of subsets in a transaction increases with its
length)

THE FP-TREE AND THE
FP-GROWTH ALGORITHM

Overview
• The FP-tree contains a compressed
representation of the transaction database.
• A trie (prefix-tree) data structure is used
• Each transaction is a path in the tree – paths can

overlap.

• Once the FP-tree is constructed the recursive,
divide-and-conquer FP-Growth algorithm is used
to enumerate all frequent itemsets.

FP-tree Construction
•  The FP-tree is a trie (prefix tree)

• Since transactions are sets of items, we
need to transform them into ordered
sequences so that we can have prefixes
•  Otherwise, there is no common prefix

between sets {A,B} and {B,C,A}

• We need to impose an order to the
items
•  Initially, assume a lexicographic order.

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

FP-tree Construction
•  Initially the tree is empty

null
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

FP-tree Construction
• Reading transaction TID = 1

• Each node in the tree has a label consisting of the item
and the support (number of transactions that reach that
node, i.e. follow that path)

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

Node label = item:support

FP-tree Construction
• Reading transaction TID = 2

• We add pointers between nodes that refer to the
same item

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

Each transaction is a path in the tree

FP-tree Construction
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

After reading
transactions TID=1, 2:

Item Pointer
A
B
C
D
E

Header Table

The Header Table and the
pointers assist in
computing the itemset
support

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

Item Pointer
A
B
C
D
E

A:1

D:1

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

B:1

B:1

C:1

D:1
Item Pointer
A
B
C
D
E

A:2

C:1

D:1

E:1

FP-tree Construction
• Reading transaction TID = 3
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

B:1

B:1

C:1

D:1
Item Pointer
A
B
C
D
E

A:2

C:1

D:1

E:1

Each transaction is a path in the tree

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1

E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers are used to assist
frequent itemset generation

D:1
E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

Each transaction is a path in the tree

FP-tree size
• Every transaction is a path in the FP-tree
•  The size of the tree depends on the compressibility

of the data

• Extreme case: All transactions are the same, the FP-
tree is a single branch

• Extreme case: All transactions are different the size
of the tree is the same as that of the database (bigger
actually since we need additional pointers)

Item ordering
•  The size of the tree also depends on the ordering of the items.
•  Heuristic: order the items in according to their frequency from larger

to smaller.
•  We would need to do an extra pass over the dataset to count

frequencies

•  Example:
TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

TID Items
1 {Β,Α}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {Β,Α,C}
6 {Β,Α,C,D}
7 {B,C}
8 {Β,Α,C}
9 {Β,Α,D}
10 {B,C,E}

σ (Α) = 7 ,	 σ (Β) = 8 ,	
σ (C) = 7 ,	 σ (D) = 5 ,	
σ(Ε)=3	

Ordering	:	Β,Α,C,D,E	

Finding Frequent Itemsets
•  Input: The FP-tree
• Output: All Frequent Itemsets and their support
• Method: Divide and Conquer:

• Consider all itemsets that end in: E, D, C, B, A
•  For each possible ending item, consider the itemsets with last

items one of items preceding it in the ordering
•  E.g, for E, consider all itemsets with last item D, C, B, A. In this

way we get all the itemsets ending at DE, CE, BE, AE
•  Proceed recursively this way.
•  Do this for all items.

Frequent itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent Itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent?

Frequent?

Frequent?

We can generate all itemsets this way
We expect the FP-tree to contain a lot less

Using the FP-tree to find frequent itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1

E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Bottom-up traversal of the tree.

First, itemsets ending in E, then D,
etc, each time a suffix-based class

D:1
E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Subproblem: find frequent
itemsets ending in E

§  We will then see how to compute the support for the possible itemsets

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in D

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in C

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in B

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in Α

Finding Frequent Itemsets

Algorithm
• For each suffix X
• Phase 1

• Construct the prefix tree for X as shown before, and
compute the support using the header table and the
pointers

• Phase 2
•  If X is frequent, construct the conditional FP-tree for X in

the following steps
1.  Recompute support
2.  Prune infrequent items
3.  Prune leaves and recurse

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Phase 1 – construct
prefix tree

Find all prefix paths that
contain E

Suffix Paths for Ε:

{A,C,D,E}, {A,D,Ε}, {B,C,E}

Example

null

A:7 B:3

C:3 C:1

D:1

D:1

E:1 E:1

E:1

Phase 1 – construct
prefix tree

Find all prefix paths that
contain E

Prefix Paths for Ε:

{A,C,D,E}, {A,D,Ε}, {B,C,E}

Example

null

A:7 B:3

C:3 C:1

D:1

D:1

E:1 E:1

E:1

Compute Support for E
(minsup = 2)

How?

Fol low pointers while
summing up coun ts :
1+1+1 = 3 > 2

E is frequent

{E} is frequent so we can now consider suffixes DE, CE, BE, AE

Example

null

A:7 B:3

C:3 C:1

D:1

D:1

E:1 E:1

E:1

Phase 2
Convert the prefix tree of E into a
conditional FP-tree

Two changes

(1) Recompute support

(2) Prune infrequent

Example

E is frequent so we proceed with Phase 2

null

A:7 B:3

C:3 C:1

D:1

D:1

E:1 E:1

E:1

Example

Recompute Support

The support counts for some of the
nodes include transactions that do
not end in E

For example in null->B->C->E we
count {B, C}

Property to satisfy: The support of
any node is equal to the sum of the
support of leaves with label E in its
subtree

null

B:3

C:3 C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

The support of any node is
equal to the sum of the
support of leaves with label E
in its subtree

null

B:3

C:1 C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

null

A:7 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

Prune infrequent
In the conditional FP-tree
some nodes may have
support less than minsup

e.g., B needs to be pruned

This means that B appears
with E less than minsup
times

Example

null

A:2 B:1

C:1 C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

The conditional FP-tree for E

Repeat the algorithm for {D, E}, {C, E}, {A, E}

Example

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Compute the support of {D,E} by following the pointers in the tree
1+1 = 2 ≥ 2 = minsup

{D,E} is frequent

null

A:2

C:1

D:1

D:1

Example

Phase 2

Construct the conditional FP-tree
1.  Recompute Support
2.  Prune nodes

null

A:2

C:1

D:1

D:1

Example

Recompute support

null

A:2

C:1

D:1

D:1

Example

Prune nodes

null

A:2

C:1

Example

Prune nodes

null

A:2

C:1 Small support

Example

Prune nodes

null

A:2

Example

Final condition FP-tree for {D,E}

The support of A is ≥ minsup so {A,D,E} is frequent
Since the tree has a single node we return to the next
subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Compute the support of {C,E} by following the pointers in the tree
1+1 = 2 ≥ 2 = minsup

{C,E} is frequent

null

A:2 C:1

C:1

Example

Phase 2

Construct the conditional FP-tree
1.  Recompute Support
2.  Prune nodes

null

A:1 C:1

C:1

Example

Recompute support

null

A:1 C:1

C:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

Example

Prune nodes

Return to the previous subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Compute the support of {A,E} by following the pointers in the tree
2 ≥ minsup

{A,E} is frequent

There is no conditional FP-tree for {A,E}

Example
• So for E we have the following frequent itemsets
{E}, {D,E}, {C,E}, {A,E} {ADE}

• We proceed with D

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

E:1 E:1 D:1
E:1

Item Pointer
A
B
C
D
E

Header table

Ending in D

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

D:1

D:1

Phase 1 – construct
prefix tree

Find all prefix paths that
contain D

Support 5 > minsup, D is
frequent

Phase 2

Convert prefix tree into
conditional FP-tree

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Recompute support

Example

null

A:7

B:2

B:3

C:3

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:3

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:1

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1 C:1

D:1

D:1

D:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1 C:1

C:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1 C:1

C:1

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on….

Example

Observations
• At each recursive step we solve a subproblem

• Construct the prefix tree
• Compute the new support
• Prune nodes

• Subproblems are disjoint so we never consider
the same itemset twice

• Support computation is efficient – happens
together with the computation of the frequent
itemsets.

Observations
• The efficiency of the algorithm depends on the
compaction factor of the dataset

•  If the tree is bushy then the algorithm does not
work well, it increases a lot of number of
subproblems that need to be solved.

