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Frequent Subgraph Mining

@ Extend association rule mining to finding frequent
subgraphs

e Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc
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Graph Definitions

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining b




Representing Transactions as Graphs

@ Each transaction is a clique of items

TD=1: A
Transl;:lction ltems
1 {A,B,C,D}
2 {A,B,E} —_—
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}
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Representing Graphs as Transactions

G1 G2 G3

(@bp) | (@b.q)| (ab.r) | (bep) | (b.e,9) | (b,cr) (d.e.r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G3

© Tan,Steinbach, Kumar

Introduction to Data Mining

b




Challenges

® Node may contain duplicate labels
® Support and confidence
— How to define them?

e Additional constraints imposed by pattern
structure

— Support and confidence are not the only constraints
— Assumption: frequent subgraphs must be connected
@ Apriori-like approach:

— Use frequent k-subgraphs to generate frequent (k+1)
subgraphs

eWhat is k?
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Challenges...

® Support:

— number of graphs that contain a particular subgraph
@ Apriori principle still holds

® Level-wise (Apriori-like) approach:
— Vertex growing:
¢ Kk is the number of vertices
— Edge growing:

+ k is the number of edges
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Vertex Growing

G3 =join(G1,G2)
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Edge Growing

G3 = join(G1,G2)
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Apriori-like Algorithm

e Find frequent 1-subgraphs

® Repeat

— Candidate generation
¢ Use frequent (k-71)-subgraphs to generate candidate k-subgraph

— Candidate pruning

+ Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

— Support counting

+ Count the support of each remaining candidate
— Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
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Example: Dataset

G1 G2 G3 G4
(a,b,p) | (a,b,q) | (a,b,r) | (b,c,p) | (b,c,q) | (b,c,r) (d,e,r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G4 0 0 0 0 0 0 0
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Example

Minimum support count = 2

k=1 @ b (e @ (e

Frequent
Subgraphs
p q r
k=2
Frequent

Subgraph P P
HPIraRE

p
=3 a——, CEEEEe
Candidate . -
Subgraphs !

o o
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Candidate Generation

@ In Apriori:

— Merging two frequent k-itemsets will produce a
candidate (k+7)-itemset

@ In frequent subgraph mining (vertex/edge
growing)

— Merging two frequent k-subgraphs may produce more
than one candidate (k+7)-subgraph
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Multiplicity of Candidates (Vertex Growing)

G3 =join(G1,G2)
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Multiplicity of Candidates (Edge growing)

® Case 1: identical vertex labels
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Multiplicity of Candidates (Edge growing)

® Case 2: Core contains identical labels

N2
)
A—c
/>
Core: The (k-1) subgraph that is common 9"
between the joint graphs ‘@) b)
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Multiplicity of Candidates (Edge growing)

e Case 3: Core multiplicity
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Adjacency Matrix Representation

A(1)  AQ@) A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A1 1 1 0 1 0 0 0

A2l 1 1 0o 1 0 1 0 0

AB)/ 1 0o 1 1 0 0 1 0

Al o 1 1 1 0 0 0 1

B 1 0o 0 0 1 1 1 0

B&)l 0o 1 0o 0 1 1 0 1

B:) 0 0 1 0 1 0 1 1

AB)  A(4) B(8)| 0O 0 0 1 0 1 1 1
A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(3)

A1 1 0 1 0 1 0 O

A2l 1 1 1 0 0 0 1 0

A3/ 0o 1 1 1 1 0 0 0

Al 1 o 1 1 0 0 0 1

BG)) 0 0 1 0 1 0 1 1

B6)l 1 0 0 0 0 1 1 1

B?)l 0 1 0 0 1 1 1 0

B8 0 0 0 1 1 1 0 1

* The same graph can be represented in many ways
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Graph Isomorphism

® A graph is isomorphic if it is topologically
equivalent to another graph
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Graph Isomorphism

@ Test for graph isomorphism is needed:

— During candidate generation step, to determine
whether a candidate has been generated

— During candidate pruning step, to check whether its
(k-1)-subgraphs are frequent

— During candidate counting, to check whether a
candidate is contained within another graph
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Graph Isomorphism

@ Use canonical labeling to handle isomorphism

— Map each graph into an ordered string representation
(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

— Example:

+ Lexicographically largest adjacency matrix

0 0 I O]
0O 0 1 1
— (11 0 1
0O 1 1 O

String: 0010001111010110

0O 1 1 1
1 01 0
1 1 0 0

1 0 0 O

Canonical: 0111101011001000
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