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Frequent Subgraph Mining

@ Extend frequent itemset mining to finding frequent
subgraphs

e Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc
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Graph Definitions

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph
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Examples of sub-graph containment

Graph Data Set support = 40%
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Representing Graphs as Transactions

G1 G2 G3

(@.b,p) | (ab,g)| (abn | (bcp)]| (b.c,9) | (B.Cr) (d.e.r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G3
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Challenges

® Node may contain duplicate labels
® Support
—  How to define it?

® Assumptions

—  Frequent subgraphs must be connected
— Edges are undirected
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Mining frequent sub-graphs

® Support:

— number of graphs that contain a particular
subgraph

@ Apriori principle still holds

@ Apriori-like approach: Use frequent k-subgraphs
to generate frequent (k+1) subgraphs

— Vertex growing: Kk is the number of vertices
— Edge growing: kis the number of edges
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Vertex Growing

G3 = join(G1,G2)
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Edge Growing

G3 = join(G1,G2)
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Apriori-like Algorithm

e Find frequent 1-subgraphs

® Repeat

— Candidate generation
¢ Use frequent (k-71)-subgraphs to generate candidate k-subgraph

— Candidate pruning

¢ Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

— Support counting
¢ Count the support of each remaining candidate
— Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
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Example: Dataset

G1 G2 G3 G4
(a,b,p) | (ab,9) | (a,b,r) | (b,.c,p) | (b,c,q) | (b,c,r) (d.e.r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G4 0 0 0 0 0 0 0
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Example

Minimum support count = 2
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Candidate Generation

@ In Apriori:

— Merging two frequent k-itemsets will produce a
candidate (k+17)-itemset

@ In frequent subgraph mining (vertex/edge
growing)

— Merging two frequent k-subgraphs may produce more
than one candidate (k+7)-subgraph
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Multiplicity of Candidates (Vertex Growing)

G3 =join(G1,G2)
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Multiplicity of Candidates (Edge growing)

® Case 1: identical vertex labels
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Multiplicity of Candidates (Edge growing)

® Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common
between the joint graphs
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Multiplicity of Candidates (Edge growing)

@ Case 3: Core multiplicity
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Adjacency Matrix Representation

A(1) A2 A(1) A(2) A(3) A(4) B(S) B(6) B(7) B(8)
A1 1 1 0 1 0 0 0
A(2)| 1 1 0 1 0 1 0 0
A3 1 0o 1 1 0 0 1 0
A4)| 0 1 1 1 0 0 0 1
B 1 0o o0 o0 1 1 1 0
B(6)| O 1 0 0 1 1 0 1
B?)l o 0o 1 0 1 0 1 1
BB 0o 0 0 1 0 1 1 1
A2)  A(1) A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(3)
A(1)| 1 1 0 1 0 1 0 0
Al 1 1 1 0 0 0 1 0
AB) 0 1 1 1 1 0 0 O
A4)| 1 0 1 1 0 0 0 1
BG)l o o0 1 o0 1 0 1 1
B6)| 1 0o o o0 0 1 1 1
B(7)| 0 1 0 0 1 1 1 0
BB 0o 0 0 1 1 1 0 1

* The same graph can be represented in many ways
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Graph Isomorphism

® A graph is isomorphic if it is topologically
equivalent to another graph
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Graph Isomorphism

@ Test for graph isomorphism is needed:

— During candidate generation step, to determine
whether a candidate has been generated

— During candidate pruning step, to check whether its
(k-1)-subgraphs are frequent

— During candidate counting, to check whether a
candidate is contained within another graph
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Graph Isomorphism

@ Use canonical labeling to handle isomorphism

— Map each graph into an ordered string representation
(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

— Example:
+ Lexicographically largest adjacency matrix
0 0 1 O] 0 1 1 1
0 0 1 1 1 01 O
— ({11 0 1 — |1 1 0 0
O 1 1 O 1 0 0 O
String: 0010001111010110 Canonic;I: 01111010110-01000
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