
Graph Mining

Mirco Nanni
Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://kdd.isti.cnr.it/

Slides from “Introduction to Data Mining” (Tan, Steinbach, Kumar)

© Tan,Steinbach, Kumar Introduction to Data Mining 1

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Frequent Subgraph Mining

 Extend frequent itemset mining to finding frequent
subgraphs

 Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Databases

Homepage

Research

Artificial
Intelligence

Data Mining

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Graph Definitions

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

a

c

b

(b) Subgraph

p

s

t

p

a

a

c

b

(c) Induced Subgraph

p

r
s

t
r

p

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Examples of sub-graph containment

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Representing Graphs as Transactions

a

b

e

c

p

q

r p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Challenges

 Node may contain duplicate labels
 Support

–  How to define it?

 Assumptions
–  Frequent subgraphs must be connected
–  Edges are undirected e

c

a

p q

r

b

p

d

r

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Mining frequent sub-graphs

 Support:
–  number of graphs that contain a particular

subgraph

 Apriori principle still holds

 Apriori-like approach: Use frequent k-subgraphs

to generate frequent (k+1) subgraphs
–  Vertex growing: k is the number of vertices
–  Edge growing: k is the number of edges

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Vertex Growing

a

a

e

a

p

q

r

p

a

a

a

p

r
r

d

G1 G2

p

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
00
00

0

1

q
rp

rp
qpp

M
G

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
0
00
00

2

r
rrp

rp
pp

M
G

a

a

a

p

q

r

e
p

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000
0000
00
000

00

3

q
r
rrp

rp
qpp

MG

G3 = join(G1,G2)

dr+

l  Follow same strategy as Apriori:
l  Find pairs of frequent, overlapping k-graphs
l  Merge them to form a (k+1)-graph

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Edge Growing

a

a
f

a

p

q

r

p

a

a

a

p

r
r

f

G1 G2

p

a

a

a

p

q

r

fp

G3 = join(G1,G2)

r
+

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Apriori-like Algorithm

 Find frequent 1-subgraphs
 Repeat

–  Candidate generation
u  Use frequent (k-1)-subgraphs to generate candidate k-subgraph

–  Candidate pruning
u  Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

–  Support counting
u  Count the support of each remaining candidate

–  Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Example: Dataset

a

b

e

c

p

q

r p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G4 0 0 0 0 0 0 … 0

a e
q

c

d

p p

p

G4

r

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Example

p

a b c d ek=1
Frequent
Subgraphs

a b

p
c d

p
c e

q
a e

r
b d

p
a b

d

r

p
d c

e

p

(Pruned candidate)

Minimum support count = 2

k=2
Frequent
Subgraphs

k=3
Candidate
Subgraphs

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Candidate Generation

  In Apriori:
–  Merging two frequent k-itemsets will produce a

candidate (k+1)-itemset

  In frequent subgraph mining (vertex/edge
growing)

–  Merging two frequent k-subgraphs may produce more
than one candidate (k+1)-subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Multiplicity of Candidates (Vertex Growing)

a

a

e

a

p

q

r

p

a

a

a

p

r
r

d

G1 G2

p

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
00
00

0

1

q
rp

rp
qpp

M
G

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
0
00
00

2

r
rrp

rp
pp

M
G

a

a

a

p

q

r

e
p

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0?00
?000
00
000

00

3

q
r
rrp

rp
qpp

M
G

G3 = join(G1,G2)

dr

?

+

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Multiplicity of Candidates (Edge growing)

 Case 1: identical vertex labels

a

b
e

a

a

b
e

a

+

a

b
e

a

e a

b
e

a

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels

+

a

a
a

a

c
b

a

a
a

a

c

a

a
a

a

c

b

b

a

a
a

a

b a

a
a

a

c

Core: The (k-1) subgraph that is common
 between the joint graphs

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Multiplicity of Candidates (Edge growing)

 Case 3: Core multiplicity

a

ab

+

a

a

a ab

a ab

a

a

ab

a a

ab

ab

a ab

a a

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Adjacency Matrix Representation

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 0 1 0 1 0 0
A(2) 1 1 1 0 0 0 1 0
A(3) 0 1 1 1 1 0 0 0
A(4) 1 0 1 1 0 0 0 1
B(5) 0 0 1 0 1 0 1 1
B(6) 1 0 0 0 0 1 1 1
B(7) 0 1 0 0 1 1 1 0
B(8) 0 0 0 1 1 1 0 1

•  The same graph can be represented in many ways

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Graph Isomorphism

 A graph is isomorphic if it is topologically
equivalent to another graph

A

A

A A

B A

B

A

B

B

A

A

B B

B

B

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Graph Isomorphism

 Test for graph isomorphism is needed:
–  During candidate generation step, to determine

whether a candidate has been generated

–  During candidate pruning step, to check whether its

(k-1)-subgraphs are frequent

–  During candidate counting, to check whether a

candidate is contained within another graph

© Tan,Steinbach, Kumar Introduction to Data Mining ‹n.›

Graph Isomorphism

 Use canonical labeling to handle isomorphism
–  Map each graph into an ordered string representation

(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

–  Example:
u  Lexicographically largest adjacency matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1011
1100
0100

String: 0010001111010110

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0001
0011
0101
1110

Canonical: 0111101011001000

