Graph Mining

Mirco Nanni
Pisa KDD Lab, ISTI-CNR & Univ. Pisa

Slides from “Introduction to Data Mining” (Tan, Steinbach, Kumar)

© Tan,Steinbach, Kumar Introduction to Data Mining

Frequent Subgraph Mining

@ Extend frequent itemset mining to finding frequent
subgraphs

e Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Homepage

Research

Artificial
Intelligence

Databases

Data Mining

© Tan,Steinbach, Kumar Introduction to Data Mining N

Graph Definitions

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining N

Examples of sub-graph containment

Graph Data Set support = 40%

© Tan,Steinbach, Kumar Introduction to Data Mining N

Representing Graphs as Transactions

G1 G2 G3

(@.b,p) | (ab,g)| (abn | (bcp)]| (b.c,9) | (B.Cr) (d.e.r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G3

© Tan,Steinbach, Kumar

Introduction to Data Mining

<.

Challenges

® Node may contain duplicate labels
® Support
— How to define it?

® Assumptions

— Frequent subgraphs must be connected
— Edges are undirected

© Tan,Steinbach, Kumar Introduction to Data Mining

Mining frequent sub-graphs

® Support:

— number of graphs that contain a particular
subgraph

@ Apriori principle still holds

@ Apriori-like approach: Use frequent k-subgraphs
to generate frequent (k+1) subgraphs

— Vertex growing: Kk is the number of vertices
— Edge growing: kis the number of edges

© Tan,Steinbach, Kumar Introduction to Data Mining N

Vertex Growing

G3 = join(G1,G2)

- Fgllow same strategy as Apgiori: 0 p p 0 g
PP - 0 0

0 0 F,mq) :)alrs of f }quent ovgrlapping|K-graplis
M, = pe Mer(getherﬁt form aok+)-gj\r%bﬁ ’g g o9
g 0 0 0 0 0 r 0 r 00
g 0 0 0

© Tan,Steinbach, Kumar Introduction to Data Mining N

Edge Growing

G3 = join(G1,G2)

© Tan,Steinbach, Kumar

Introduction to Data Mining

<.

Apriori-like Algorithm

e Find frequent 1-subgraphs

® Repeat

— Candidate generation
¢ Use frequent (k-71)-subgraphs to generate candidate k-subgraph

— Candidate pruning

¢ Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

— Support counting
¢ Count the support of each remaining candidate
— Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

© Tan,Steinbach, Kumar Introduction to Data Mining N

Example: Dataset

G1 G2 G3 G4
(a,b,p) | (ab,9) | (a,b,r) | (b,.c,p) | (b,c,q) | (b,c,r) (d.e.r)
G1 1 0 0 0 0 1 0
G2 1 0 0 0 0 0 0
G3 0 0 1 1 0 0 0
G4 0 0 0 0 0 0 0

© Tan,Steinbach, Kumar

Introduction to Data Mining

<.

Example

Minimum support count = 2

k=1 @ b e @ (e

Frequent
Subgraphs
p q r
k=2
Frequent

Subgraph P P
HPIrapns

p p
k=3 @) o) d---=c
Candidate |
Subgraphs @

(Pruned candidate)

© Tan,Steinbach, Kumar Introduction to Data Mining N

Candidate Generation

@ In Apriori:

— Merging two frequent k-itemsets will produce a
candidate (k+17)-itemset

@ In frequent subgraph mining (vertex/edge
growing)

— Merging two frequent k-subgraphs may produce more
than one candidate (k+7)-subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining N

Multiplicity of Candidates (Vertex Growing)

G3 =join(G1,G2)

-

0 p p g¢q 0O p p 0 p p 0 ¢
M=p0r0 Mm:pOrO p 0 r 0 O
anl”OO p O MG3=p O]/'O

g 0 0 0 0 0 r O 0 o0 9

q 0 2 0

© Tan,Steinbach, Kumar Introduction to Data Mining N

Multiplicity of Candidates (Edge growing)

® Case 1: identical vertex labels

© Tan,Steinbach, Kumar Introduction to Data Mining

Multiplicity of Candidates (Edge growing)

® Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common
between the joint graphs

© Tan,Steinbach, Kumar Introduction to Data Mining

Multiplicity of Candidates (Edge growing)

@ Case 3: Core multiplicity

- N
a—a

meeae\e
b—a

L
b—a—a b—@

© Tan,Steinbach, Kumar Introduction to Data Mining

Adjacency Matrix Representation

A(1) A2 A(1) A(2) A(3) A(4) B(S) B(6) B(7) B(8)
A1 1 1 0 1 0 0 0
A(2)| 1 1 0 1 0 1 0 0
A3 1 0o 1 1 0 0 1 0
A4)| 0 1 1 1 0 0 0 1
B 1 0o o0 o0 1 1 1 0
B(6)| O 1 0 0 1 1 0 1
B?)l o 0o 1 0 1 0 1 1
BB 0o 0 0 1 0 1 1 1
A2) A(1) A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(3)
A(1)| 1 1 0 1 0 1 0 0
Al 1 1 1 0 0 0 1 0
AB) 0 1 1 1 1 0 0 O
A4)| 1 0 1 1 0 0 0 1
BG)l o o0 1 o0 1 0 1 1
B6)| 1 0o o o0 0 1 1 1
B(7)| 0 1 0 0 1 1 1 0
BB 0o 0 0 1 1 1 0 1

* The same graph can be represented in many ways

© Tan,Steinbach, Kumar Introduction to Data Mining N

Graph Isomorphism

® A graph is isomorphic if it is topologically
equivalent to another graph

© Tan,Steinbach, Kumar Introduction to Data Mining

Graph Isomorphism

@ Test for graph isomorphism is needed:

— During candidate generation step, to determine
whether a candidate has been generated

— During candidate pruning step, to check whether its
(k-1)-subgraphs are frequent

— During candidate counting, to check whether a
candidate is contained within another graph

© Tan,Steinbach, Kumar Introduction to Data Mining N

Graph Isomorphism

@ Use canonical labeling to handle isomorphism

— Map each graph into an ordered string representation
(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

— Example:
+ Lexicographically largest adjacency matrix
0 0 1 O] 0 1 1 1
0 0 1 1 1 01 O
— ({11 0 1 — |1 1 0 0
O 1 1 O 1 0 0 O
String: 0010001111010110 Canonic;I: 01111010110-01000

© Tan,Steinbach, Kumar Introduction to Data Mining N

