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Abstract The availability of massive network and mobil-
ity data from diverse domains has fostered the analysis
of human behavior and interactions. Broad, extensive, and
multidisciplinary research has been devoted to the extrac-
tion of non-trivial knowledge from this novel form of data.
We propose a general method to determine the influence
of social and mobility behavior over a specific geograph-
ical area in order to evaluate to what extent the current
administrative borders represent the real basin of human
movement. We build a network representation of human
movement starting with vehicle GPS tracks and extract rel-
evant clusters, which are then mapped back onto the ter-
ritory, finding a good match with the existing administra-
tive borders. The novelty of our approach is the focus on
a detailed spatial resolution, we map emerging borders in
terms of individual municipalities, rather than macro re-
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gional or national areas. We present a series of experi-
ments to illustrate and evaluate the effectiveness of our ap-
proach.

1 Introduction and Related Work

In recent years the analysis of human behavior has received
increasing attention by the scientific community. This is
partly due to the availability of massive network and mobil-
ity data from diverse domains together with novel analytical
paradigms which place human relationships or their mobil-
ity patterns at the center of investigation. Inspired by appli-
cation domains such as social networks [1, 5], human mobil-
ity [12], the interplay between the two [24], and so on, over
the last few years, broad, multidisciplinary, and extensive re-
search has been devoted to extracting non-trivial knowledge
from network and mobility data. Predicting future links be-
tween actors of a network [4, 19], detecting and studying
the diffusion of information between them [13, 27], mining
frequent patterns of user behavior [3, 7, 25], and predicting
human mobility patterns [18] are only a few examples of the
problems studied by researchers including physicists, math-
ematicians, computer scientists, and sociologists.

In this paper we address a set of fascinating questions that
were recently posed in [23]: “Are there geographical borders
that emerge from the way people use the territory for their
daily activities?”, “If so, how can these borders be found?”,
“Do these borders match the administrative borders?”. Two
recent studies have tackled questions on a large geographi-
cal scale based on both mobile activity in the US [23] and on
social interactions in the UK [21]. Thiemann et al. [23] an-
alyzed the human mobility network extracted from the logs

Author's personal copy

mailto:simone.mainardi@iit.cnr.it
mailto:fabio.pezzoni@iit.cnr.it
mailto:rinzivillo@isti.cnr.it
mailto:michele.coscia@isti.cnr.it
mailto:fosca.giannotti@isti.cnr.it
mailto:pedre@di.unipi.it


Künstl Intell

provided by the project Where’s George?1: using a stochas-
tic method, they extracted a partition of regions according
to a fitness function based on modularity maximization. The
experiments were performed in a large scale setting in which
the minimum spatial granularity was given by a zip code
area in the United States. Ratti et al.’s approach [21] also
adopts the modularity function as an objective function to
delineate borders emerging from the network extracted from
a large database of telecommunication records. However, it
is well known in the literature that modularity has an inher-
ent resolution problem, which causes small communities to
be ignored and merged together [11].

In this research, we address the problem of finding the
borders of human mobility at the lower spatial resolution of
municipalities or counties. The aim of discovering borders at
a meso-scale is to provide decision-support tools for policy
makers, capable of suggesting optimal administrative bor-
ders for the government of the territory. To this purpose, we
need fine-grained results since we are working with smaller
areas than those used by Thiemann et al. [23] and Ratti et
al. [21]. We therefore use another state-of-the-art commu-
nity discovery algorithm, namely Infomap [22], which has
been shown to perform better than any other modularity
maximization algorithm [17].

We study the problem of finding the geographical bor-
ders that emerge from the mobile activity of people and
compare them with the existing administrative borders of
cities, municipalities and provinces. “Do people move and
interact within specific areas?”, “Are those areas bounded
somehow?”, “Do these boundaries correspond to the admin-
istrative borders, which are defined a priori, usually with-
out taking into account the social connections, the everyday
needs of commuters, families, and so on?”, “Do the borders
change during the day, or during the week?”, “Can we spot
some seasonality?”. Motivated by these questions, we apply
Social Network Analysis techniques to mobility data. Our
aim was to better understand human mobility patterns, in a
new fashion, based not on the interaction of humans them-
selves, but rather on the underlying, hidden connections be-
tween different places. We apply Community Discovery al-
gorithms to the network of geographic areas (i.e., each node
represents a cell or region of movements) in order to find
areas that are densely connected by the visits of different
users.

The main contribution of the paper consists in the ex-
traction of a fine-grained mobility network to model human
behavior along with the use of a state-of-the-art community
discovery algorithm to detect relevant communities corre-
sponding to geographical areas. In addition, we provide sev-
eral experiments based on a real-life scenario of GPS tracked
vehicles.

1http://www.wheresgeorge.com.

The remainder of the paper is organized as follows. In
Sect. 2 we present a general method for extracting a com-
plex network from mobility data using a multi-scale ap-
proach. Section 3 introduces the Infomap algorithm. Sec-
tion 4 shows the settings of our experiments and our main
results. We conclude with a brief discussion in Sect. 5.

2 Mapping Mobility to Complex Networks

Our objective is to determine the influence of social behav-
ior in a territory, in particular to evaluate how the current ad-
ministrative borders represent the real basin of human move-
ments. In general, we want to determine groups of regions
such that the inner movements within a group are more fre-
quent than the movements towards the other groups. We thus
propose a general framework based on the following steps:
(1) the territory is partitioned by means of a non-overlapping
spatial tessellation whose regions will serve as spatial refer-
ences; (2) the movements are generalized to the spatial tes-
sellation; (3) they are then coded by means of a directed
weighted graph; and (4) the graph is then analyzed to ex-
tract the communities within it.

A spatial tessellation serves as the basic level of detail to
represent movements. The spatial granularity of the tessel-
lation strictly depends on the precision of the data available.
The movement of people can be tracked using various tech-
nologies such as GPS devices, GSM network logs, Wi-Fi
fingerprints, and RFID tag readings. Each of these tracking
technologies has its own spatial precision and uncertainty:
for example, GSM data usually has a spatial granularity cor-
responding to the spatial extent of each cell. GPS based lo-
cations, on the other hand, are so precise that it is very un-
likely that two different positions will share the same coor-
dinates. It is thus useful to generalize each point to a spatial
area, either using existing spatial coverage, such as cadastral
data, census sectors, or cellular network coverage, or by ag-
gregating together similar points by means of convex hulls,
buffers, or clustering [2, 9, 16].

In a broad sense, the movement of an object can be de-
scribed as a sequence of trips, i.e. the movements from an
origin to a destination. Depending on the capabilities of
the tracking device and the application scenario, each trip
can be described in terms of a trajectory, i.e. a sequence
of time-stamped locations collected along the route of the
trip. In a scenario where GSM data are used, it is very likely
that the movement is described in terms of a pair of cells:
a first cell where the call began, and a second cell where
the call ended [21]. In rare cases, it is possible to follow
the devices moving in the network on the base of the cells
crossed. This sampling frequency issue also generally ap-
plies to other movement data collections. For example, GPS
devices have the potential to collect several points per sec-
ond; however, to preserve the battery life of devices and to
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minimize the quantity of data exchanged, the sampling fre-
quency is determined according to the application scenario.

Here we consider two different approaches to represent
movement: on the one hand we consider each movement
as a pair consisting of the origin and destination; on the
other hand we maintain the detailed information, according
to the capabilities of the collection device used, regarding
the route followed between the two locations. In the first
case, movements are transformed into a sequence of visited
places which are annotated with the corresponding temporal
information. This type of representation provides a precise
vision of movement dynamics and, at the same time, allows
the data to be handled on a large scale. In addition, the em-
phasis on the data is placed on where people move rather
than how they reach their destinations. Thus, given a trip—a
detailed description of how we determine trips is given in
Sect. 4—of a user, we only map the origin and the desti-
nation to the corresponding regions (we call this mapping
strategy Origin-Destination mapping). In the second case,
we map the entire route on the spatial tessellation. Depend-
ing on the technology used to log movements, the continu-
ous path is often approximated with a sequence of sampled
time-referenced observations. In this case, mapping to the
spatial tessellation is performed by mapping each sampled
point to the corresponding cell in the tessellation (we refer
to this strategy as Segments mapping).

Once each position has been generalized according to the
spatial tessellation, the transformation of the movements to a
graph G(V,E) is straightforward: each region R is mapped
to the vertex vR ∈ V and the flow from a region R to a region
Q is mapped to the edge (vR, vQ) whose weight is propor-
tional to the density of movements between the two regions.

The original problem of finding clusters consisting of ar-
eas with a dense exchange of travelers between them and a
low exchange of travelers across this set of areas can then be
reduced to the problem of finding clusters of nodes that are
densely connected internally and sparsely connected with
the rest of the network. This last formulation is the most
popular problem definition of many community discovery
algorithms [8, 10].

3 Identifying Clustered Structure

Community algorithms can provide extremely different re-
sults depending on their definition of what a community in
a complex network is [8]. For example, modularity maxi-
mization algorithms aim to maximize a fitness function de-
scribing how internally dense the clusters are according to
their edges. Other techniques use random walks to unveil
the modular structure of the network, with denser areas of
the network where the random walker is “trapped”.

When clustering algorithms enable the multi-level iden-
tification of “clusters-in-a-cluster”, they are defined as be-
ing “hierarchical”. With this type of clustering algorithm,
we can explore each cluster from several levels and possi-
bly choose the level, for example, which best optimizes a
particular fitness function. Among the hierarchical cluster-
ing algorithms available in the literature, we choose the In-
fomap, which is one of the best performing non-overlapping
clustering algorithms [17].

The Infomap algorithm is based on a combination of
information-theoretic techniques and random walks. It uses
the probability flow of random walks [20] on a graph as a
proxy for information flows in the real system and decom-
poses the network into clusters by compressing a description
of the probability flow. The algorithm looks for a cluster par-
tition M into m clusters so as to minimize the expected de-
scription length of a random walk. The intuition behind the
Infomap approach for the random walks compression is as
follows. Each node is described with a prefix and a suffix.
The prefix refers to the cluster the node belongs to. The suf-
fix univocally identifies the node within its cluster. The suf-
fixes are then reused in all prefixes, just like street names are
reused in different cities. If a node n in a path belongs to the
same cluster of its predecessor then n is described only by
its suffix, otherwise both prefix and suffix are used. The op-
timal division into different prefixes represents the optimal
community partition.

We can now formally present the theory behind Infomap.
The expected description length, given a partition M , is
given by:

L(M) = qH(Q) +
m∑

i=1

piH(Pi). (1)

L(M) is made up of two terms: the first is the entropy of the
movements between clusters and the second is the entropy
of movements within clusters. The entropy associated with
the description of the n states of a random variable X that
occur with probabilities pi is H(X) = −∑n

1 pi log2pi . In
(1) entropy is weighted by the probabilities with which they
occur in the particular partitioning. More precisely, q is the
probability that the random walk jumps from one cluster to
another on any given step and pi is the fraction of within-
community movements that occur in community i plus the
probability of exiting module i. Thus, H(Q) is the entropy
of clusters names, or city names (as presented above), and
H(Pi) the entropy of movements within cluster i, the street
names in our example, including the exit from it. Since try-
ing any possible partition in order to minimize L(M) is in-
efficient and intractable, the algorithm uses a deterministic
greedy search [6] and then refines the results with a simu-
lated annealing approach [14].
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4 Experiments and Discussion

As a proxy for human mobility, we used a dataset of GPS
tracked vehicles in the area around Pisa. The vehicles have
a GPS tracker on board as required by a special insurance
policy that vehicle owners are required to subscribe to. The
GPS tracker collects timestamped points and transmits them
to the insurance server at an average rate of one point every
30 seconds when the vehicle is moving or, at most, every
two kilometers.

However, for each vehicle the server only has a sequence
of received points without any semantic annotation. Thus,
it is necessary to partition that sequence into sub-sequences
that represent a single journey each. We used a time thresh-
old to determine journeys: if a point in the sequence has been
collected at least 20 minutes after the previous point, the cur-
rent journey ends and a new one begins [26].

We observed approximately 38,000 vehicles for a period
of five weeks (from June 14th to July 19th, 2010). The fre-
quency of the time sampling enabled us to explore different
temporal resolutions when generalizing the data to a given
spatial tessellation. As presented in Sect. 2, we adopted two
different strategies to generalize the timestamped locations.
We used Origin-Destination (OD) mapping to simplify each
trip by only considering the first and the last points. Sec-
ondly, we used Segment (SEG) mapping to generalize each
timestamped point of a trajectory to the spatial tessellation.

We adopted a spatial tessellation based on existing cen-
sus sectors as provided by the ISTAT, the Italian National
Bureau of Statistics. The reasons for this are manifold: this
data is publicly available and contains information such as
population, commuters and segmentation by age; it provides
a hierarchical representation of the territory (e.g. the admin-
istrative area of a city can be described as the union of all
its statistical sectors) and thus it enabled us to compare di-
rectly the analytical results with the existing administrative
borders, i.e. the existing aggregation of census sectors. In
addition, the extent of each sector is proportional to the pop-
ulation density distribution, thus in the urban centers the sec-
tors are very fine-grained, whereas in rural areas the extent
is very large.

It would be possible to adopt a regular rectangular grid
to generalize movements, however, new challenges could
arise. First, the regular partition does not take population
distribution into account. This could create biases within the
cells, since many of them would not contain any trajectory,
which would generate holes in the final clustered coverage.
Secondly, it is not clear which spatial resolution should be
adopted, since a very fine-grained grid could increase the
biases in the cells and a coarser partition could fail to take
important areas into account. Thus, to generate a suitable
regular grid for this kind of analysis, it is necessary to have
a multi-resolution grid that enables the extent of each cell

Table 1 Features of the OD and SEG mapping graphs

OD mapping SEG mapping

Nodes 7,878 8,156

Edges 474,964 292,524

Avg. node weight 350.03 4,279.65

Avg. edge weight 2.91 57.88

Avg. shortest path 2.6850 6.13534

Clust. coeff. 0.1705 0.4221

Diameter 7 17

to be adjusted dynamically. For example, in [15] a traffic
generalization framework is shown that exploits this multi-
relational approach using a dynamic traffic unit to aggregate
trajectories. Census sectors can be aggregated into a four
level hierarchy: the base level contains the census sectors in
which each area corresponds approximately to a city block.
Several adjacent sectors make a comune (hereafter, a munic-
ipality). Several adjacent municipality make up a provincia
(hereafter, a province).

The census sector level is used for the generalization in
accordance with the two mapping strategies. The network
derived by the OD mapping contains a link between two
nodes vR and vS if at least one vehicle starts from region
R and stops at region S, where R and S are the regions as-
sociated with vR and vS respectively. The weight of the link
is given by the number of all the vehicles starting and stop-
ping in the two nodes. The network determined by the SEG
mapping has a link between two nodes if at least one tra-
jectory of a vehicle exists whose two consecutive points can
be mapped to vR and vS respectively. The generalized sec-
tors are then clustered according to the community discov-
ery method and the result is compared with the aggregation
of sectors at a town level.

Table 1 shows some features of the OD and the SEG map-
ping. Although the census sectors we considered did not
change from one mapping to another, SEG has about 300
more nodes than OD. These nodes correspond to “transit”
census sectors, which are neither the source nor the destina-
tion of any journey. Conversely, the difference in the number
of edges between SEG and OD means that there are adjacent
census sectors crossed by many journeys. For example, con-
sider two adjacent census sectors encompassing a highway.
Many vehicles will pass through these sectors when travel-
ing on the highway, regardless of their source (destination).
Despite this, only one edge linking these two highway sec-
tors exists. Indeed, information on the number of journeys
passing through these two sectors can still be read from the
weight associated with the edge interconnecting them.

By observing the average node weight in the OD map-
ping, we can see that on average each sector is the source
(destination) of approximately 350 journeys. Similarly, the
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Table 2 Level-1 Clusters with PageRank greater than 5 % in the OD
mapping. Clusters are indicated with the name of a Comune they en-
compass

Cluster PageRank %

Pisa 16.93

Viareggio 13.04

Lucca 12.07

Empoli 11.98

Livorno 8.33

Pistoia 8.14

Pontedera 7.13

Montecatini Terme 6.42

average edge weight indicates that two sectors are the source
(destination) of on average about three journeys. If we note
the average node weight in the SEG mapping, we can see
that each census sector is reached and/or left approximately
4,000 times. This apparently huge number is due to the fact
that many sectors are crossed in each journey and this di-
rectly translates into an increment of the weight associated
with incoming and outgoing edges. Finally, the average edge
weight indicates that about 60 vehicles travel between each
two adjacent census sectors.

4.1 Origin-Destination Mapping

The clustering method produced a 4-level hierarchy of clus-
ters for the OD mapping. At the first level there are 96 clus-
ters, which are further divided into smaller clusters at lower
levels of the hierarchy (e.g. 513 at the second level). Fig-
ure 1 shows the resulting level-1 clusters. Out of these 96
clusters, we select 19 with a PageRank value greater than
0.1 % and in particular eight with a PageRank value greater
than 5 % (see Table 2). These clusters are named after the
largest municipality that they contain. We will always refer
to each cluster by that name, when not ambiguous. Thus, the
majority of the journeys involve very few clusters—a jour-
ney has 98.13 % chance of beginning (ending) in a sector
of the 19 highest-PageRank clusters. These few clusters are
also the most geographically extended, spanning almost all
the territory we considered—containing 7,527 census sec-
tors, i.e. 95.54 % of the total. Furthermore, they consist of
geographically adjacent census sectors, although OD map-
ping contains many connections between non-adjacent ar-
eas.

To validate our results, we will now discuss the main
clusters using background knowledge of the interested ar-
eas, starting from the Pisa cluster, which is highlighted in
a dark blue in Fig. 1. This cluster consists of the major-
ity of the statistical sectors in Pisa plus the sectors of its
adjacent municipalities, i.e. Cascina, Calci, San Giuliano

Terme and Vecchiano. Traditionally, these towns are re-
ferred to as “Area Pisana”2, which can be considered as an
enlarged metropolitan area centered around Pisa. Recently,
the regional government promoted a strategic development
project for this area (named “Piano Strategico dell’Area
Pisana”) with the objective of designing an integrated mo-
bility plan for the five municipalities.

The other clusters with high PageRank can also be in-
terpreted by means of well-known geographical and socio-
demographic features. The reasons for these relations are
due to both the historical relationship and the morphology
of the territory. For example, the cluster of Viareggio, lo-
cated in the north-west and in green in Fig. 1, covers an
area widely known as the “Versilia”3. Other examples in-
clude, but are not limited to, the cluster of Lucca and the
“Piana di Lucca”4, Montecatini Terme and the “Valdiniev-
ole” as well as Empoli and the “Valdarno Inferiore”5. Thus,
we can state that mobility patterns reflect the strength of the
socio-economic relations between geographical areas very
well.

It is worth noting how the cohesion of sectors within
the same municipality is maintained after the clustering,
apart from one small exception. For example, the sectors
belonging to the administrative border of Pisa are assigned
to different clusters, in particular the south-west sectors
are associated with the adjacent cluster of Livorno. These
sectors, in fact, correspond to the beaches and are a fre-
quent destination for people from Livorno during the sum-
mer period. The main seaside destination, on the other
hand, for people in Pisa is the west of the city, adjacent
to the estuary of the river Arno and the beaches in Vecchi-
ano.

Finally, it is important to note that it is not a necessary
condition for a cluster to consist of geographically adjacent
sectors. In fact, the OD mapping has many edges that rep-
resent long-range trips. However, the clusters consist of ad-
jacent sectors, in particular the urban zones, where the local
mobility is very dense and, hence, very effective in attract-
ing the zones. Figure 1 (Right) shows an example of a cluster
within non adjacent sectors. The teasels are rendered with a
color proportional to the volume of mobility flows. It should
be noted that some satellite areas are assigned to the cluster.

4.2 Segments Mapping

The clustering method for the SEG mapping produced a 5-
level hierarchy of clusters. At level 1 there are 11 clusters,
which are shown in Fig. 2 (Left). At this level, the number of

2http://it.wikipedia.org/wiki/Pisa#Area_pisana.
3http://en.wikipedia.org/wiki/Versilia.
4http://it.wikipedia.org/wiki/Piana_di_Lucca.
5http://it.wikipedia.org/wiki/Valdarno#Valdarno_inferiore.
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Fig. 1 Visualization of the clusters identified by the OD mapping. In
reference to the existing administrative borders, the perimeter of each
town is drawn with a thicker line. (Left) The regions within the same
cluster are given the same color. (Right) Visualization of the level 2

sub-clusters of the Pisa cluster with different levels of brightness ac-
cording to the internal volume of trajectories: the sub-clusters with the
higher mobility flows have a darker color

Fig. 2 Visualization of the clusters determined from the SEG mobil-
ity network. In reference to the existing administrative borders, the
perimeter of each town is drawn with a thicker line. (Left) The regions
within the same cluster are given the same color. (Right) Visualization

of the level 2 sub-clusters of the Pisa cluster with different levels of
brightness according to the internal volume of trajectories: the sub-
clusters with the higher mobility flows have a darker color

clusters is significantly less than in the OD mapping. Hence,
the clustering method aggregates census sectors better. This
is reasonable since it is a direct consequence of the major-
ity of very short-ranged edges, which allow the connection
only among geographically adjacent sectors. Moreover, their

PageRank never assume values less than 0.6 %, whereas in
the OD mapping there are 77 clusters whose PageRank is
less than 0.1 %. In contrast to the OD mapping, in SEG clus-
ter coverage has an interesting and meaningful size at level
2 as well.
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At the second level of clustering it is possible to inves-
tigate how the sectors are aggregated. An example of the
hierarchical aggregation of a single level 1 cluster is shown
in Fig. 2 (Right). In this case, all the clusters consist of adja-
cent sectors, as opposed to the OD mapping. SEG clustering
produces very compact clusters, all centered around urban
centers as in the OD clustering. The clusters of Viareggio,
Pistoia, Lucca, Livorno and Empoli have approximately the
same geographical extension. The clusters of Montecatini
Terme and Volterra, on the other hand, are bigger, encom-
passing geographical areas which, in OD, are considered as
different clusters. The clusters of Pisa and Pontedera are sig-
nificantly different compared to the OD mapping because
the municipalities of Cascina and Calci belong to the cluster
of Pontedera.

5 Conclusions and Future Work

In this paper we have presented a general method to discover
geographical areas determined by the mobility behavior of
people. The method is based on the extraction of a multi-
scale mobility network, representing the flows of movement
between a set of regions. The network is analyzed using one
of the best performing non-overlapping community discov-
ery algorithms. We presented an extensive experimental set-
ting where the results are discussed and commented on with
reference to the domain knowledge of the territory. The clus-
ters discovered have two main properties: (1) the sectors of
the same municipality are mainly mapped to the same clus-
ter, maintaining their adjacency; (2) a cluster is a composi-
tion of several municipalities, i.e. a municipality that self-
contains its mobility flows does not exist. We believe that
these clusters prove that our method is effective, since it
does not destroy the original cohesion, and is useful since
it suggests a better organization of mobility management,
which is different from the organization currently used in a
province.

The quality of the resulting clusterings strictly depends
on the quality of the mobility network and, hence, on an ac-
curate spatial generalization of trips. In this work we have
focused on an existing spatial division provided by the cen-
sus sector partition, thus with a fixed spatial resolution. An
interesting extension of the approach would be to study how
spatial resolution and clustering quality are related. We plan
to set up a systematic experiment to evaluate the clustering
result by varying the spatial generalization resolution. We
also plan to emphasize the temporal dimensions of the mo-
bility network. Our aim is to consider the movements in dif-
ferent temporal windows and to map these movements to
different OD and SEG mappings. We will thus be able to
compare the changes in the clustering map over time inter-
vals, for example, mobility borders generated during week-
days and weekends or even variations within a single day.

These two new directions require an objective procedure to
state the quality of the clustering. Thus, it is necessary to de-
fine new measures to compare the clustering results obtained
by using different spatial and temporal resolutions and dif-
ferent community discovery algorithms.
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