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Trajectory Clustering



T-clustering

 Trajectories are 
grouped based on 
similarity

 Several possible 
notions of similarity
 Start/End points

 Shape of trajectory

 Shape & time

 Etc.
Nanni, Pedreschi.  Time-focused clustering of trajectories of moving objects.   J. of Intelligent Information Systems, 2006. 

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko. Visually-driven analysis of movement data by progressive 
clustering. J. of Information Visualization, 2008
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Trajectory Clustering

 Questions:

 Which distance 
between 
trajectories?

 Which kind of 
clustering?

 What is a cluster 
‘mean’ in our case?

● A representative 
trajectory?
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 Average Euclidean distance (Spatio-temporal distance)

 “Synchronized” behaviour distance

 Similar objects = almost always in the same place at the same time

 Computed on the whole trajectory

 Which distance?

distance between 
moving objects τ1 
and τ2 at time t
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Average Euclidean Distance Sincronized

 Align point temporally

 Eventually assign penalties to non matching 
points



Common Destination

 Select last point Plast for each trajectory

 D(T,T’) = Euclidean(Plast, P’last)



Common Origins

 Select first point Pfirst for each trajectory

 D(T,T’) = Euclidean(Pfirst, P’first)



Route Similarity

 Alignment of points, multiple matches

 Average Euclidean Distance

 Penalties for non matching initial points (no 
penalties for destinations)
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Which kind of clustering?

 General requirements:

 Non-spherical clusters should be allowed
● E.g.: A traffic jam along a road = “snake-shaped” cluster

 Tolerance to noise

 Low computational cost

 Applicability to complex, possibly non-vectorial data

 A suitable candidate: Density-based clustering

 OPTICS   (Ankerst et al., 1999)  → T(rajectory)-OPTICS

 Evolution of basic DBSCAN



Density Based Clustering

K-means Density-based
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A sample dataset

 A set of trajectories 
forming 4 clusters + 
noise (synthetic)
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K-means

T-OPTICS

HAC-average

T-OPTICS vs. HAC  & K-means

Reachability plot 
(= objects reordering for distance distribution)

ε threshold



Ad-hoc distance functions

 Colocation – 

 Link prediction, 

 Semantic behaviors, 

 GSM data

 Spatio-temporal 
Colocation – 

 Link prediction, 

 Semantic behaviors, 

 GSM data

 Start and End 
inclusion

 Car Pooling Matching

 Align to end – 

 Incoming flows

 Align to start – 

 Outcoming flows
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Progressive clustering

 First, create a large clusters of trajectories using the “common ends” distance function, 

 Concentrate on the (big) cluster of inward trajectories (routes towards the city center)

 Refine by creating subclusters using a more sophisticated distance function (route similarity)

Clustering Data
(Common Destination)

Select a Cluster Clustering Data
(route similarity)
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Left: peripheral routes;    middle: inward routes;       right: outward routes.

Clustering trajectories on “route similarity”
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Trajectory patterns

 Are there groups of objects that move together 
for some time or in a similar way?



Moving Trajectory Flocks

M. Wachowicz, R. Ong, C. Renso, M. Nanni: Finding moving flock patterns among pedestrians 
through collective coherence. IJGIS 25(11): 1849-1864 (2011)

● Group of objects that 
move together (close to 
each other) for a time 
interval

● Discover all possible:
● sets of objects O, with |O| > min_size  and
● time intervals T, with |T| > min_duration

● such that for all timestamps t ∈T the points in O|t are contained 
in a circle of radius r
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Moving Clusters

 A moving cluster is a set of objects that move close to 
each other for a long time interval

 Formal Definition [Kalnis et al., SSTD’05]:
 A moving cluster is a sequence of (snapshot) 

clusters c1, c2, …, ck such that for each timestamp 
i (1 ≤ i < k), |ci ∩ ci+1| / |ci U ci+1| ≥ θ      (0 < θ ≤ 1)

time



T-Patterns

 A sequence of visited regions, frequently visited in the 
specified order with similar transition times

Giannotti, Nanni, Pedreschi, Pinelli. 
Trajectory pattern mining. Proc. ACM SIGKDD 2007



T-Patterns

 t
i
 = transition time,  A

i
 = spatial region
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Sample Trajectory Pattern
Data Source: Trucks in Athens – 273 trajectories)

A → B → B and
A → B’ → B’’
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