Data Mining II

Mobility Data Mining

F. Giannotti& M. Nanni KDD Lab – ISTI – CNR Pisa, Italy

Outline Mobility Data Mining

- Introduction
- MDM methods
 - Clustering
 - I Trajectory Pattern Mining
 - Prediction
- MDM methods at work. Understanding Human Mobility
 - Dimensions of mobility analytics
 - Models of human mobility
 - The Mobility Atlas
- Module 3 Case studies
 - D Matrix, D4D, Sociometer,
 - Network& Mobility

Derived patterns and models

Combination & refinement of basic patterns and models

 Individual Mobility Profile: routines consistently followed by a single moving object

 T-PTree: predictive tree built by combining T-Patterns

User's Mobility Profile

Given the user history as an ordered sequence of spatiotemporal points, we want to extract a set of *routines* in order to create the his\her *mobility profile*.

Where:

A *Routine* is a typical local behavior of the user.
 A *Mobility profile* is the set of user's routines

Discovering individual systematic movements

Derived patterns and models: mobility profiles

Trasarti, Pinelli, Nanni, Giannotti.

Mining mobility user profiles for car pooling. ACM SIGKDD 2011

Derived patterns and models: T-Prediction Tree

Monreale, Pinelli, Trasarti, Giannotti.

Where Next: a predictor on Trajectory pattern mining. Proc. ACM SIGKDD 2009

Basic Idea: People move as the crowd moves

How to realize this idea:

- Extract patterns from all the available movements in a certain area instead of on the individual history of an object;
- □ Using these **Local movement patterns** as predictive rules.
- Build a prediction tree as global model.

Predict by means of T-Pattern tree

Given a new trajectory:

- 1. Search for best match
- 2. Candidate generation
- 3. Make predictions

How to compute the Best Match?

Computing the path score

The path score is the aggregation of all punctual scores along a path.

The **Best Match** is the path having:

- ✓ the maximum path score;
- \checkmark at least one admissible prediction.

Derived patterns and models: T-PTree

 Example: Compare actual trajectory against the T-PTree
 Spatial and temporal similarity used to choose best "rule"

M-Atlas system

Download from: http://m-atlas.cu

The (GeoP)KDD process

M-Atlas input

DM-Atlas: An atlas for "urban mobility behaviors". A framework to query, analyze and navigate the results on mobility data

M-Atlas platform

A tool kit to extract, store, combine different kinds of models to build mobility knowledge discovery processes.

From DATA to KNOWLEDGE

outline

Introduction

DMM methods

- □ Clustering
- I Trajectory Pattern Mining
- Prediction
- Semantic enrichment

DM Methods at work. Understanding Human Mobility

- Dimensions of mobility analytics
- Models of human mobility
- The Mobility Atlas

GSM data

□Mobile Cellular Networks handle information about the positioning of mobile terminals CDR Call Data Records: call logs (tower position, time, duration,..) Handover data: time of tower transition More sophisticated

HR HR GMSC MSC VIR area MSC VIR area BSC BSC BSC BSC MSC Cell BSC area

GPS tracks

Onboard navigation devices se to central servers

Ide;Time;Lat;Lon;Height;Course;Speed;PDOP;State;NSat

... 8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817;3.8;1808;4 8;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4 8;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4 8;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4 8;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4 8;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4 8;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4 8;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4 8;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;4 8;22/03/07 08:52:21;50.776803;7.208262; 71.1;82.0;35.058;3.8;1808;4 8;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;4

Sampling rate ~30 secs
 Spatial precision ~ 10 m

Road side sensors

Measure the flow of a specific road arc
Laser-based sensors
Inductive loops
Traffic cameras

Other data sources

Social web services
Flickr
Foursquare
Gowalla
Twitter

 Presence estimation
 Hotel statistics
 Airport departures and arrivals
 Bus and public transportation
 Park usage
 Weather conditions

Dimensions to explore

A small city: Pisa

First dimension: space Travel length distribution

Travel length on the map

Exploring Origin and Destinations

The general process

Exploring Origins and Destinations

Exploring the origins of trips

Exploring origins of trips

Second dimension: time When people move to Pisa?

Dimensions

Let's focus at city level

0km – 5Km

5km – 15Km

Trips segmented by similarity

Explore clusters: Florence

Explore clusters: A1

Explore clusters: A12

110 115

Explore Clusters: Valdera

Explore clusters: Versilia

speed

Trip segmentation by time

Trips Segmented by Time: from 5 to 8

Discover traffic jams

Duration Filte 60 75 Length Filter 113 947 Speed Filter 3 33 Support Filter	r 90 1781 63	105 2615 93	120 120 3449 113 ÷ 123 ÷	60 75 113 947 3 33	90 90 1781 63	105 2615 93	120 3449 123	120 ÷
Duration Filte 60 75 Length Filter 113 947 Speed Filter 3 33	r 90 1781 63	105 2615 93	120 120 3449 113 ↔ 113 ↔ 123 ↔		90 90 1781 63	105 2615 93	120 120 3449	120 ×
Duration Filte 60 75 Length Filter 113 947 Speed Filter	r 90 1781	105 2615	60 ÷ 120 3449	60 75 113 947	90 91 90	105 2615	120 120 3449	120 ×
Duration Filte 60 75 Length Filter 113 947	r 90 1781	105 2615	120 120 3449	60 75 113 947	90 91 90	105 2615	120 120 3449	120 ×
Duration Filte	r 90	105	120 60 ÷	60 75	90	105	120	120 -
Duration Filte	r							
December 511								
Flock 4 Duration: 60.0s		Length:	192.724m	Support: 3		Speed:	11.563	
Flock 3 Duration: 120.0	- IS	Length:	113.523m	Support: 3		Speed:	3.406	
Duration: 120.0	IS	Lenath:	269.872m	Support: 3		Speed:	8.096	
Flock 2		Lenath:	2.101.391m	Support: 3		Speed	126.083	
Flock 1 Duration: 60.0s Flock 2							102.233	

Discovering access patterns to Pisa with GPS tracks data

Access patterns using T-clustering

Characterizing the access patterns: origin & time

Marina di Pisa/Tirrenia

attractiveness/efficiency of a service with GPS tracks

Aggregate trips by common destinations

Seaside: Tirrenia and Marina di Pisa

Seaside: Tirrena and Marina di Pisa

To Marina di Pisa

http://www.ilmeteo.it/portale/archivio-meteo/Tirrenia/2011/Maggio

Industry: Saint Gobain

Industry: Saint Gobain

Residential Area: I Passi

Residential Area: I Passi

Residential vs Industrial

Distribution in periods

Atlas of Urban Mobility

From Profiles to Systematicity Indicator

- Each routine of a profile is associated with a measure of frequency
 Routines are sorted according to their
 - frequency: rank 1, rank 2, rank 3, ...
- A minimum
 frequency threshold
 allow to distinguish a
 svstematic trip from

Rapporto Sistematici/Occasionali

Impact of systematic mobility on access patterns

Atlas of Urban Mobility

Pisa – Traffico in Ingresso

Incoming Traffic (38.464 Trajectories)

Incoming Temporal Matrix

	City	Traj	Perc
NORD 32%	San Giuliano T	4.816	62%
	Vecchiano	1.425	94%
	Viareggio	1.142	99%
	Lucca	862	67%
	Camaiore	358	94%
OVEST			
0%		1	
	Livorno	2.843	92%
	Collesalvetti	565	50%
SUD 12%	Rosignano Mari	140	41%
	Fauglia	137	19%
	Cecina	124	45%
EST	Cascina	7.078	97%
	San Giuliano T.	2,881	37%
	Pontedera	1.350	95%
54%	Calci	795	79%
1	Calcinaia	693	92%

Regular VS Occasional

Pisa – Incoming Traffic

Outgoing	Traffic	(38.271	Trajectories)
----------	---------	---------	---------------

Outgoing Temporal Matrix

	City	Traj	Perc
NORD	San Giuliano T	4.842	62%
	Vecchiano	1.418	93%
	Viareggio	1.117	99%
32%	Lucca	886	67%
	Camaiore	329	96%
OVEST			
0%			
	Livorno	2.812	92%
	Collesalvetti	565	51%
SUD	Rosignano Mari	143	44%
13%	Fauglia	130	19%
	Cecina	123	45%
	Cascina	7.253	97%
	San Giuliano T.,	2.860	37%
EST	Pontedera	1.326	95%
54%	Calci	798	82%
-	Calcinaia	704	93%

Regular VS Occasional

Trajectories by residence

Cosa succede a San Giuliano Terme?

Internal trajectories in Pisa

- Pisa
- San Giuliano Terme
- Cascina
- Livorno
- Pontedera
- Vecchiano
- Viareggio
- Collesalvetti
- Calci
- Lucca
- Fauglia
- Vicopisano

Trip distribution per day

- Pisa - S. Giuliano - Cascina

Studying proactive car pooling

Discovering individual systematic movements

Mobility profile matching

A can serve most of the routines of B \Box the match is suggested.

.

Carpooling Network

Th space = 1800sTh time = 1000mU ---w--> V If U could take lifts from V

Carpooling Network Pisa - Communities

Carpooling Network Pisa

Service: Montacchiello (Car Pooling?)

- Traj Blu
 DT: 06:46:53
- Traj Red
 DT: 11:52:06
- Traj Green
 DT: 06:51:41
- □ Blu can give a ride to Green

Application: Car pooling

Pro-active suggestions of sharing rides opportunities without the need for the user to explicitly specify the trips of interest.

Communities of users

Car Pooling

OctoPisa Carpooling potential

□38416 vehicles □1,449,258 trips □% di systematic trips □% di matching trips □% highly successful matching trips Saved trips Saved Kms

Carpooling propensity of Pisa & Florence

Car pooling potential

Electrificability

Joint work with UPM

Electrifiability index

Electrifiability index

Firenze

■ Yes ■ No