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Over-fitting the data 

• Finding chance occurrences in data that look like interesting 

patterns, but which do not generalize, is called over-fitting the data 

• We want models to apply not just to the exact training set but to the 

general population from which the training data came 

• Generalization 
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Over-fitting 

• The tendency of DM procedures to tailor models to the 

training data, at the expense of generalization to 

previously unseen data points. 

• All data mining procedures have the tendency to over-fit to some 

extent 

• Some more than others. 

• “If you torture the data long enough, it will confess” 

• There is no single choice or procedure that will eliminate over-fitting 

• recognize over-fitting and manage complexity in a principled way. 
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Fitting Graph 
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Over-fitting in tree induction 
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Over-fitting in linear discriminants 

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 

 

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 

 

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥1
2 

 
𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥1

2 + 𝑤7 ∗ 𝑥2/𝑥3 
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Example: Classifying Flowers 
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Example: Classifying Flowers 
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Example: Classifying Flowers 
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Example: Classifying Flowers 
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Need for holdout evaluation 

Under-fitting  Good   Over-fitting 

• In sample evaluation is in favor or “memorizing” 

• On the training data the right model would be best 

• But on new data it would be bad  
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Over-fitting 

• Over-fitting: Model “memorizes” the properties of the particular training 

set rather than learning the underlying concept or phenomenon 

Under-fitting 

Over-fitting 

Good Fit 
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Holdout validation 

• We are interested in generalization  

• The performance on data not used for training 

• Given only one data set, we hold out some data for evaluation  

• Holdout set for final evaluation is called the test set 

• Accuracy on training data is sometimes called “in-sample” 

accuracy, vs. “out-of-sample” accuracy on test data 
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Cross-Validation 



P. Adamopoulos      New York University 

Cross-Validation 
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From Holdout Evaluation to Cross-Validation 

• Not only a simple estimate of the generalization performance, but 

also some statistics on the estimated performance,  

• such as the mean and variance 

• Better use of a limited dataset 

• Cross-validation computes its estimates over all the data 
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Let’s focus back in on actually mining the data.. 

Which customers should TelCo 

target with a special offer, prior 

to contract expiration? 
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MegaTelCo 
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Generalization Performance 

• Different modeling procedures may have different performance on 

the same data 

• Different training sets may result in different generalization 

performance 

• Different test sets may result in different estimates of the generation 

performance 

• If the training set size changes, you may also expect different 

generalization performance from the resultant model 
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Learning Curves 
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Logistic Regression vs Tree Induction 

• For smaller training-set sizes, logistic regression yields better 

generalization accuracy than tree induction 

• For smaller data, tree induction will tend to over-fit more 

• Classification trees are a more flexible model representation than 

linear logistic regression 

• Flexibility of tree induction can be an advantage with larger training 

sets:  

• Trees can represent substantially nonlinear relationships between the 

features and the target 
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Learning curves vs Fitting graphs 

• A learning curve shows the generalization performance plotted 

against the amount of training data used  

• A fitting graph shows the generalization performance as well as the 

performance on the training data, but plotted against model 

complexity  

• Fitting graphs generally are shown for a fixed amount of training 

data 
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Avoiding Over-fitting 

Tree Induction: 

• Post-pruning 

• takes a fully-grown decision tree and discards unreliable parts  

• Pre-pruning 

• stops growing a branch when information becomes unreliable  

 

Linear Models: 

• Feature Selection 

• Regularization 

• Optimize some combination of fit and simplicity 
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Regularization 

Regularized linear model: 

 

argmax
𝑾

[fit 𝒙,𝒘 − 𝜆 ∗ penalty(𝒘)] 

• “L2-norm” 

• The sum of the squares of the weights 

• L2-norm + standard least-squares linear regression = ridge regression 

• “L1-norm” 

• The sum of the absolute values of the weights 

• L1-norm + standard least-squares linear regression = lasso 

• Automatic feature selection 
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Nested Cross-Validation 
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Thanks! 
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Questions? 


