- Given the following NN with
 - assigned weights (see figure)
 - activation function f(S) = sign(S-0.2) for all nodes
- Label the test set on the right, then compute accuracy, and precision & recall for both classes

I1	12	0
-1	+1	-1
+1	+1	+1
+1	-1	-1
+1	-1	+1
-1	+1	+1
+1	+1	+1
-1	-1	-1
+1	+1	-1
-1	-1	-1
+1	+1	+1

I1	12	0
-1	+1	-1
+1	+1	+1
+1	-1	-1
+1	-1	+1
-1	+1	+1
+1	+1	+1
-1	-1	-1
+1	+1	-1
-1	-1	-1
+1	+1	+1

- Transform the 2-d dataset below into a higher dimensional space to make colors separable
 - E.g. from (X,Y) data to (X,Y,Z), with Z=X+Y

- Transform the 2-d dataset below into a higher dimensional space to make colors separable
 - E.g. from (X,Y) data to (X,Y,Z), with Z=X+Y

- Transform the 2-d dataset below into a higher dimensional space to make colors separable
 - E.g. from (X,Y) data to (X,Y,Z), with Z=X+Y

Simplest solution: (X,Y) → (X,Y, X², Y²)

Fitting graphs

 Our classification method produces the following fitting graph. What can we conclude about the model and/or the dataset?

Learning curves

 Two classification methods produce the following learning curves. What can we conclude about them?

Expected value of classifiers

- The quality check section of a toy factory wants to build a classifier to decide, for each toy produced, whether it is faulty (class=Y) or not (class=N)
 - Throwing away a toy costs \$5
 - Selling a faulty toy causes a damage to the company's image estimated around \$10 (per toy)
- How can we set up a cost matrix such that the classifier built will minimize costs?

Expected value of classifiers

	Predicted Y	Predicted N
Faulty (Y)		
Non-faulty (N)		

Expected value of classifiers

	Predicted Y	Predicted N
Faulty (Y)	\$ 5	\$ 10
Non-faulty (N)	\$ 5	0