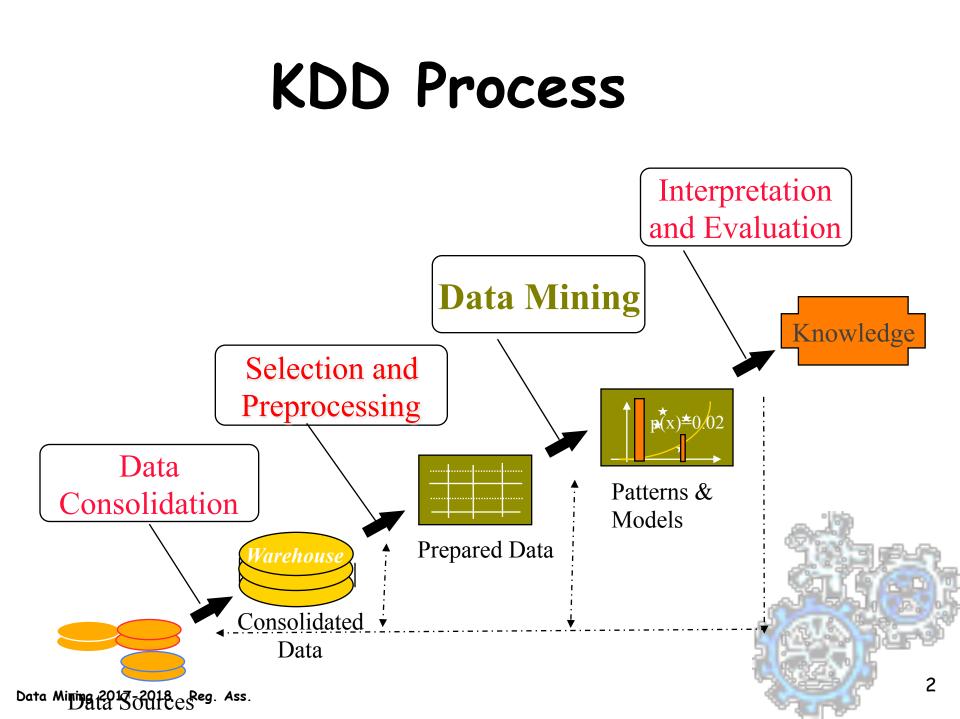
Data Mining

Knowledge Discovery in Databases

Dino Pedreschi, Mirco Nanni, Fosca Giannotti Pisa KDD Lab, ISTI-CNR & Univ. Pisa

Data Mining 2017-2018 Reg. Ass.



Association rules and market basket analysis

Data Mining 2017-2018 Reg. Ass.

Association rules - module outline

1. What are association rules (AR) and what are they used for:

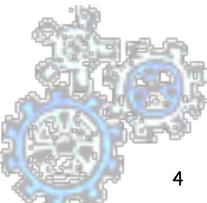
- 1. The paradigmatic application: Market Basket Analysis
- 2. The single dimensional AR (intra-attribute)

2. How to compute AR

- 1. Basic Apriori Algorithm and its optimizations
- 2. Multi-Dimension AR (inter-attribute)
- 3. Quantitative AR
- 4. Constrained AR

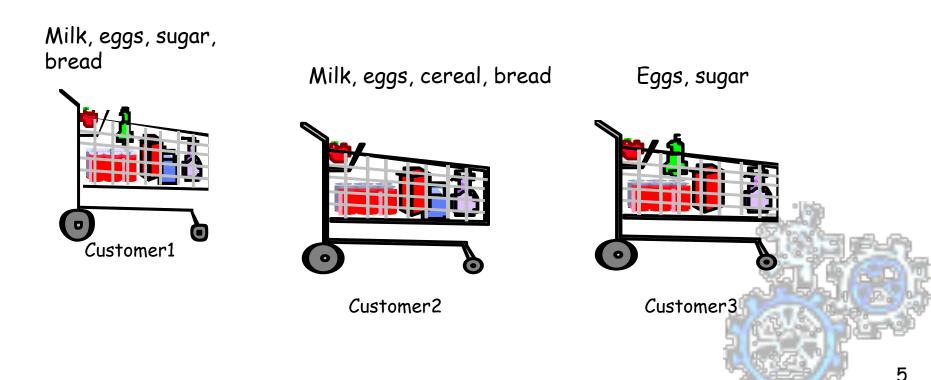
3. How to reason on AR and how to evaluate their quality

- 1. Multiple-level AR
- 2. Interestingness
- 3. Correlation vs. Association



Market Basket Analysis: the context

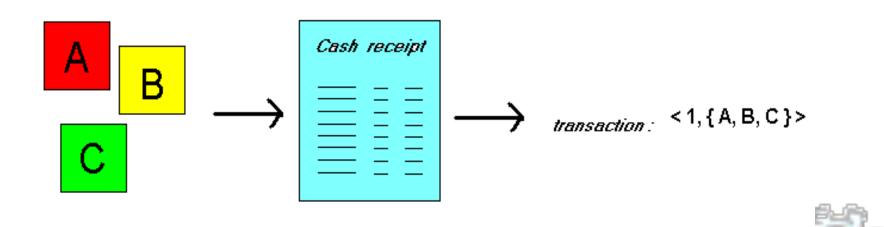
Customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"



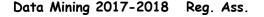
Market Basket Analysis: the context

Given: a database of customer transactions, where each transaction is a set of items

Find groups of items which are frequently purchased together

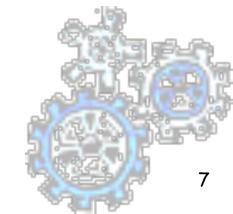


6



Goal of MBA

- Extract information on purchasing behavior
- Actionable information: can suggest
 - new store layouts
 - new product assortments
 - which products to put on promotion
- MBA applicable whenever a customer purchases multiple things in proximity
 - credit cards
 - services of telecommunication companies
 - banking services
 - medical treatments



MBA: applicable to many other contexts

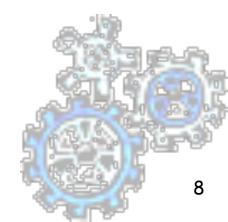
Telecommunication:

Each customer is a transaction containing the set of customer's phone calls

Atmospheric phenomena:

Each time interval (e.g. a day) is a transaction containing the set of observed event (rains, wind, etc.)

Etc.



Association Rules

- Express how product/services relate to each other, and tend to group together
- "if a customer purchases three-way calling, then will also purchase call-waiting"
- simple to understand
- actionable information: bundle three-way calling and call-waiting in a single package
- Examples.
 - **Rule form:** "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") → buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") ^ takes(x, "DB") → grade(x, "A") [1%, 75%]

Useful, trivial, unexplicable

- Useful: "On Thursdays, grocery store consumers often purchase diapers and beer together".
- Trivial: "Customers who purchase maintenance agreements are very likely to purchase large appliances".
- Unexplicable: "When a new hardaware store opens, one of the most sold items is toilet rings."

Association Rules Road Map

- Single dimension vs. multiple dimensional AR
 - E.g., association on items bought vs. linking on different attributes.
 - Intra-Attribute vs. Inter-Attribute
- Qualitative vs. quantitative AR
 - Association on categorical vs. numerical attributes
- Simple vs. constraint-based AR
 - E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?
- Single level vs. multiple-level AR
 - E.g., what brands of beers are associated with what brands of diapers?

11

Association vs. correlation analysis.

Association does not necessarily imply correlation. Data Mining 2017-2018 Reg. Ass.

Association rules - module outline

What are association rules (AR) and what are they used for:

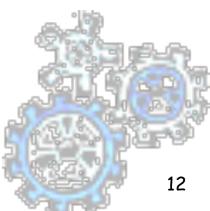
- The paradigmatic application: Market Basket Analysis
- The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR
- Constrained AR

How to reason on AR and how to evaluate their quality

- Multiple-level AR
- Interestingness
- Correlation vs. Association



Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining by Tan, Steinbach, Kumar

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

A collection of one or more items

- Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
 - σ(X) = |{t_i|X contained in t_i and ti is a trasaction}|

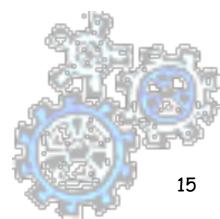
Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

■ An itemset whose support is greater ^{Data Mining 201} than offered tal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke



Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y

Confidence (c)

 Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Frain Frain $\{\text{Milk, Diaper}\} \Rightarrow \text{Beer}$ $s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$ $c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$ (16)

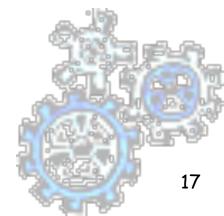
Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence > minconf threshold

Brute-force approach:

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds

⇒ Computationally prohibitive!



Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

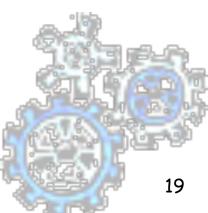
- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
- 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive



Basic Apriori Algorithm

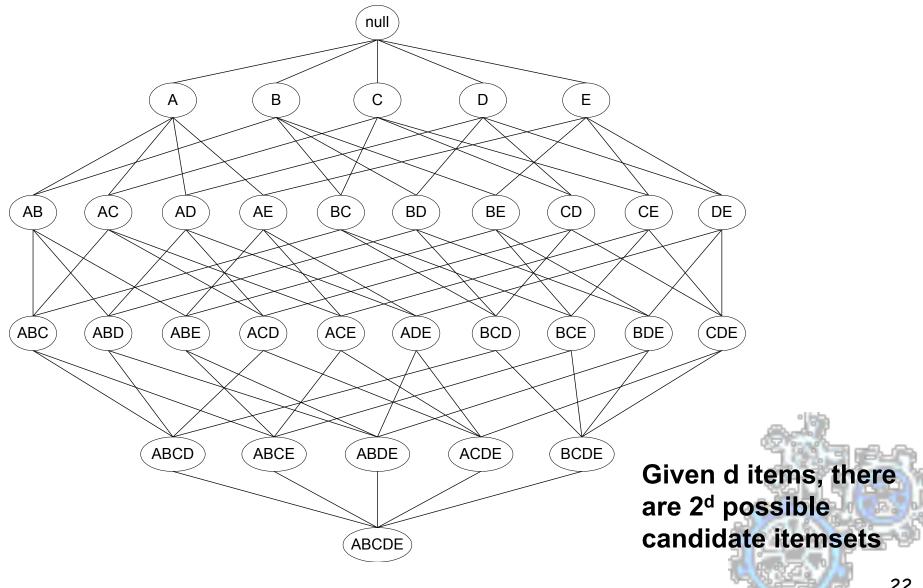
Problem Decomposition

- ① Find the *frequent itemsets*: the sets of items that satisfy the support constraint
 - A subset of a frequent itemset is also a frequent itemset,
 i.e., if {A, B} is a frequent itemset, both {A} and {B} should
 be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- ② Use the frequent itemsets to generate association rules.

Frequent Itemset Mining Problem

- I={x₁, ..., x_n} set of distinct literals (called items)
- $X \subseteq I, X \neq \emptyset, |X| = k, X$ is called *k*-itemset
- A transaction is a couple (tID, X) where X is an itemset
- A transaction database TDB is a set of transactions
- An itemset X is contained in a transaction $\langle tID, Y \rangle$ if $X \subseteq Y$
- Given a TDB the subset of transactions of TDB in which X is contained is named TDB[X].
- The support(COUNT) of an itemset X, written supp_{TDB}(X) is the cardinality of TDB[X].
- The support(relative) of an itemset X, written supp(X) is the cardinality of TDB[X]/ cardinality of TDB.
- Given a user-defined min_sup threshold an itemset X is frequent in TDB if its support is no less than min_sup.
- Given a user-defined min_sup and a transaction database TDB, the Frequent Itemset Mining Problem requires to compute all frequent itensets in TDB w.r.t min_sup.

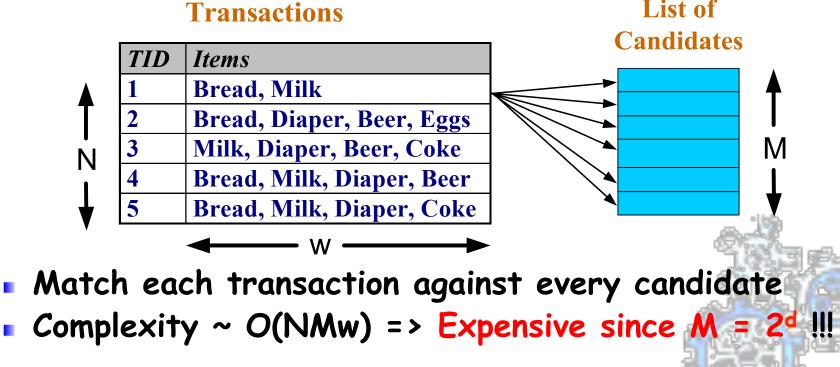
Frequent Itemset Generation



Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
 Transactions



Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions

24

 No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

 $\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

The Apriori property

• If B is frequent and $A \subseteq B$ then A is also frequent

•Each transaction which contains B contains also A, which implies supp. (A) \geq supp.(B))

•Consequence: if A is not frequent, then it is not necessary to generate the itemsets which include A.

•Example:

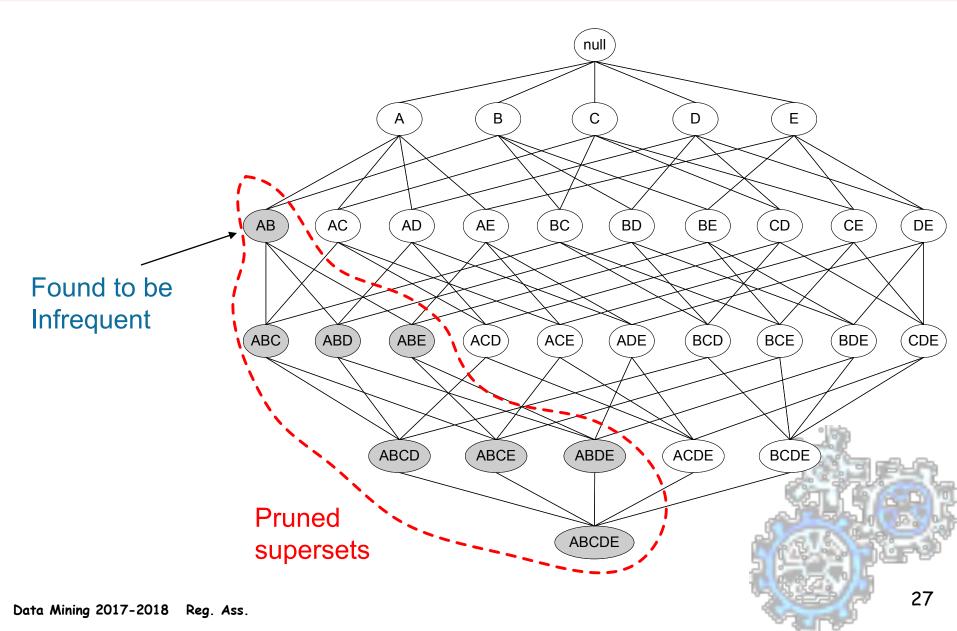
- •<1, {a, b}> <2, {a} >
- •<3, {a, b, c}> <4, {a, b, d}>

with minimum support = 30%.

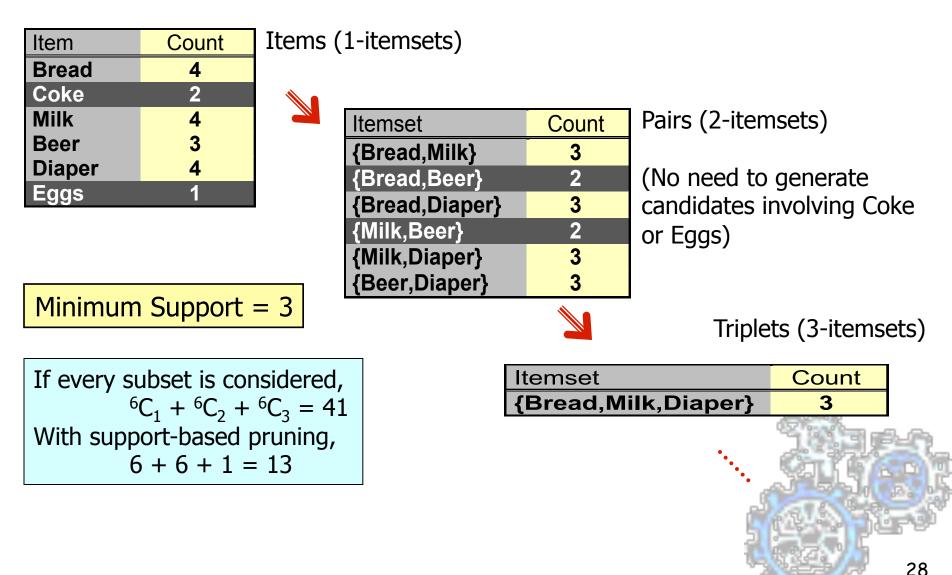
The itemset {c} is not frequent so is not necessary to check for:

{c, a}, {c, b}, {c, d}, {c, a, b}, {c, a, d}, {c, b, d}

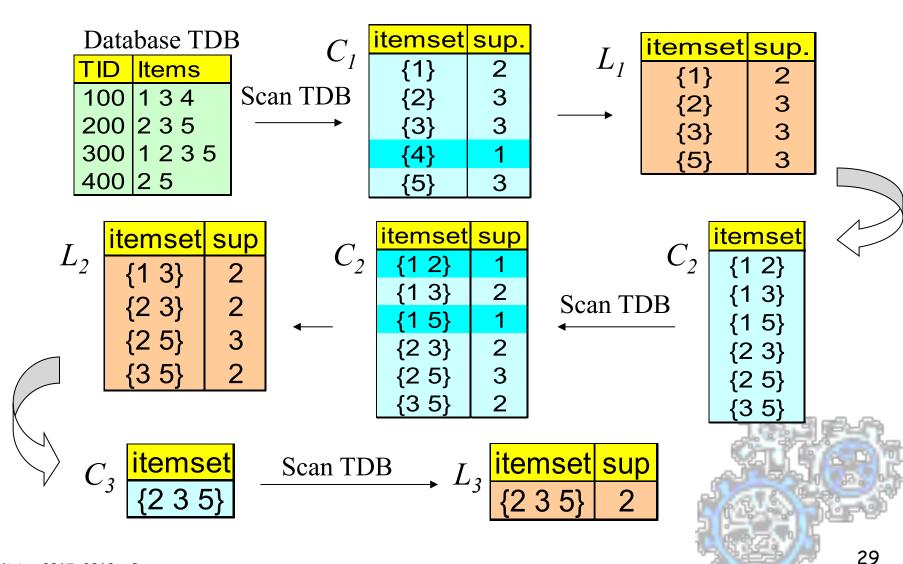
Illustrating Apriori Principle



Illustrating Apriori Principle



Apriori Execution Example (min_sup = 2)



The Apriori Algorithm

30

Join Step: C_k is generated by joining L_{k-1} with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Pseudo-code: C_k: Candidate itemset of size k

 L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k + +) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

Data Mining 2017-2018 Reg. Ass.

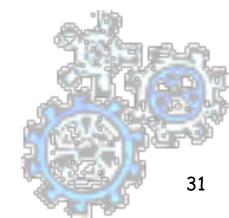
How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- **Step 1:** self-joining L_{k-1}

insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from $L_{k-1}p$, $L_{k-1}q$ where $p.item_1=q.item_1$, ..., $p.item_{k-2}=q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

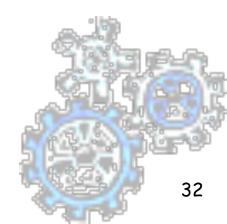
Step 2: pruning

forall itemsets c in C_k do
forall (k-1)-subsets s of c do
if (s is not in L_{k-1}) then delete c from C_k



Example of Generating Candidates

- $L_3 = \{abc, abd, acd, ace, bcd\}$
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L_3
- C₄={abcd}



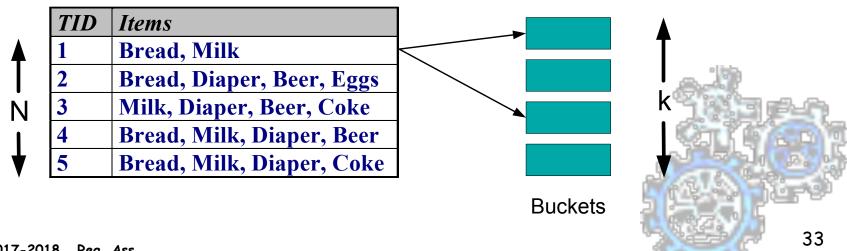
Reducing Number of Comparisons

Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure

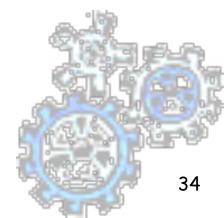
 \checkmark Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions



Optimizations

- DHP: Direct Hash and Pruning (Park, Chen and Yu, SIGMOD'95).
- Partitioning Algorithm (Savasere, Omiecinski and Navathe, VLDB'95).
- Sampling (Toivonen'96).
- Dynamic Itemset Counting (Brin et. al. SIGMOD'97)



Factors Affecting Complexity

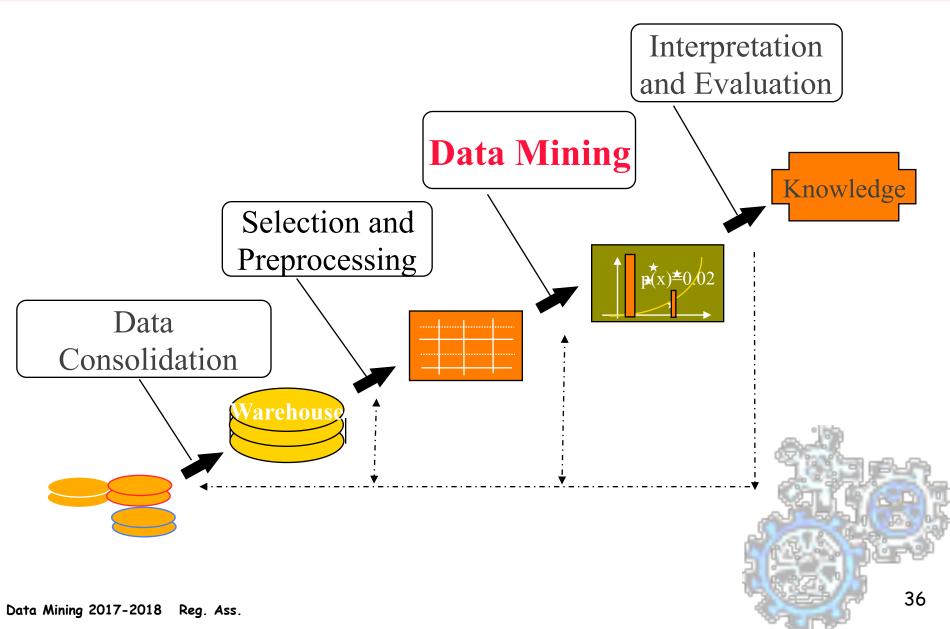
Choice of minimum support threshold

- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase

Size of database

- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

The KDD process



Generating Association Rules from Frequent Itemsets

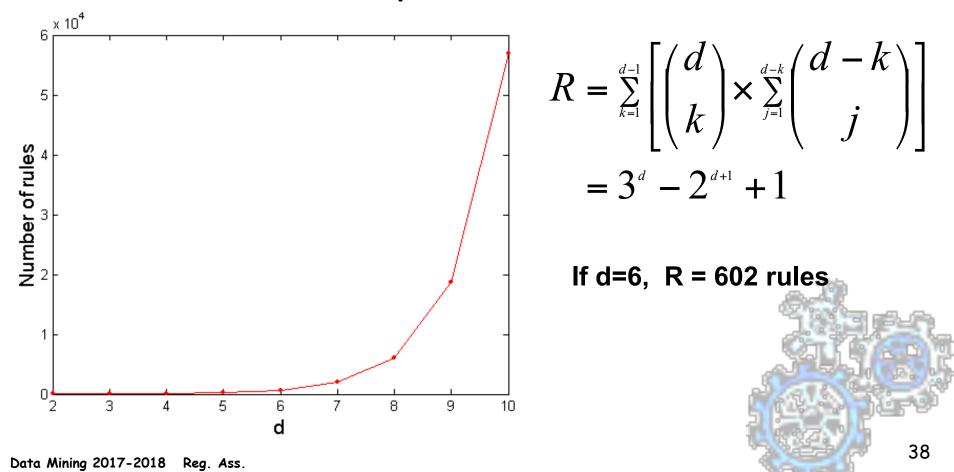
- Only strong association rules are generated
- Frequent itemsets satisfy minimum support threshold
- Strong rules are those that satisfy minimum confidence threshold
 Strong rules are those that satisfy minimum
 Support(A ∪ B)
 Support(A)

For each frequent itemset, f, generate all non-empty subsets of f
For every non-empty subset s of f do
 if support(f)/support(s) ≥ min_confidence then
 output rule s ==> (f-s)
end

Computational Complexity

Given d unique items:

- Total number of itemsets = 2^d
- Total number of possible association rules:

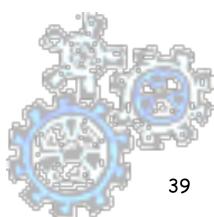


Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L - f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC →D,	ABD →C,	ACD →B,	$BCD \to A$,
A →BCD,	$B \rightarrow ACD$,	$C \rightarrow ABD$,	D →ABC
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \to AD$,
$BD \to AC$,	$CD \rightarrow AB$,		

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)



Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

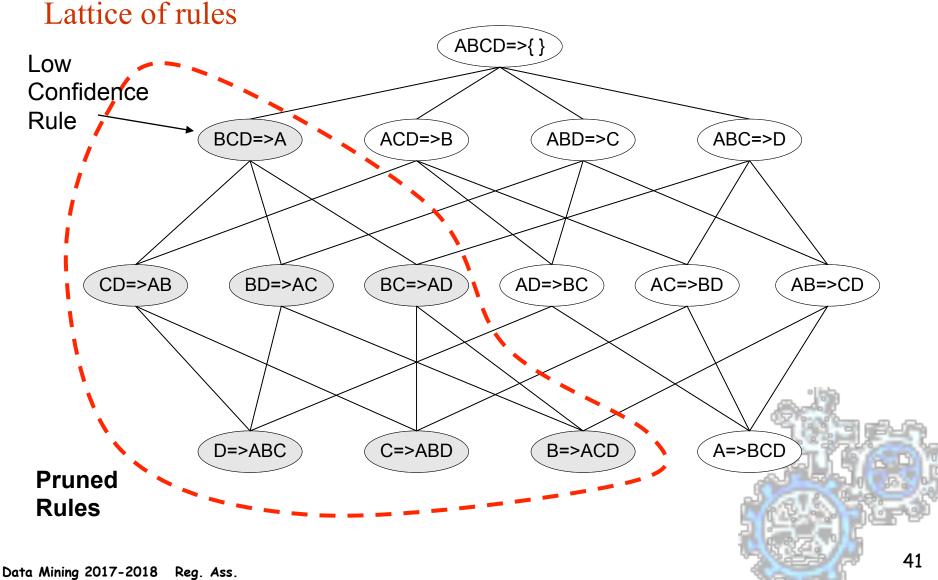
 But confidence of rules generated from the same itemset has an anti-monotone property

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

✓ Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

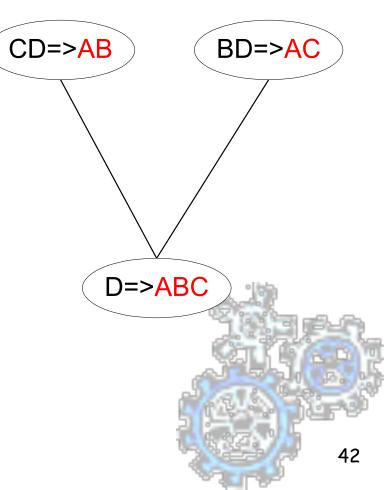
40

Rule Generation for Apriori Algorithm

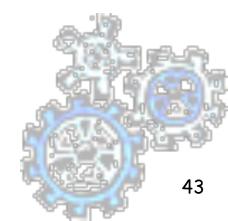


Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence



Wrap up



Data Mining 2017-2018 Reg. Ass.

Frequent Itemsets

Transaction ID	Items Bought
1	dairy,fruit
2	dairy,fruit, vegetable
3	dairy
4	fruit, cereals

Support({dairy}) = 3/4 (75%) Support({fruit}) = 3/4 (75%) Support({dairy, fruit}) = 2/4 (50%)

If minsup = 60%, then {dairy} and {fruit} are frequent while {dairy, fruit} is not.

44

Data Mining 2017-2018 Reg. Ass.

Frequent Itemsets vs. Logic Rules

Frequent itemset $I = \{a, b\}$ does not distinguish

ᡢᡢᡊᡢᡊᡊᡊᡢᡢᡢᡊᡢᡊᡊᡊᡊᡊᡊᡊᡊᡊᡢᡊᡢᡢ ლიტიტიტიტიტიტიტიტიტიტიტი დ *ᡢᡢᡊᡢᡊᡊᡊᡢᡢᡢᡊᡢᡊᡊᡊᡊᡊᡊᡊᡊᡊᡢᡊᡢᡢ* ~^^^^^^^^ *ᡣᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕᢕ ᠥᠥᠥᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡᡡ ₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼ ᡢᡢᡊᡊᡊᡊᡊᡢᡊᡢᡊᡊᡊᡊᡊᡊᡊᡊᡊᡢᡊᡢᡢᡢ ᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧᠧ*

Logic does: $x \Rightarrow y$ *iff* when x holds, y holds too

Association Rules: Measures

Let A and B be a partition of an itemset I :

 $A \Rightarrow B[s, c]$

A and B are itemsets

s = **support of A** \Rightarrow **B** = support(A,B)

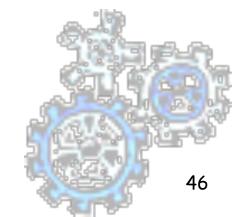
c = confidence of $A \Rightarrow B$ = support(A,B)/support(A)

Measure for rules:

✓ minimum support σ

✓ minimum confidence γ

• The rules holds if $: s \ge \sigma$ and $c \ge \gamma$



Association Rules: Meaning

 $A \Rightarrow B [s, c]$

Support: denotes the frequency of the rule within transactions. A high value means that the rule involve a great part of database.

 $support(A \Rightarrow B) = p(A \& B)$

Confidence: denotes the percentage of transactions containing A which contain also B. It is an estimation of conditioned probability.

confidence($A \rightarrow B$) = p(B|A) = p(A & B)/p(A).

47

Data Mining 2017-2018 Reg. Ass.

Association Rules – the parameters σ and γ

Minimum Support σ :

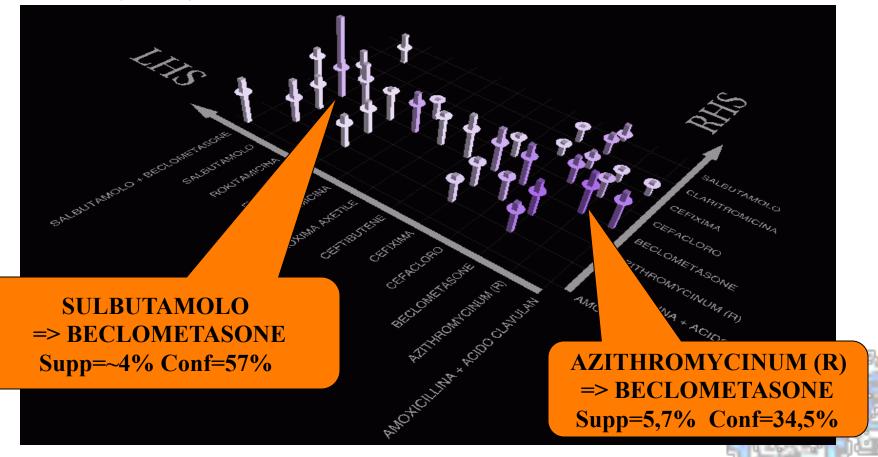
High ⇒ few frequent itemsets ⇒ few valid rules which occur very often

Low \Rightarrow many valid rules which occur rarely

Minimum Confidence γ : High \Rightarrow few rules, but all "almost logically true" Low \Rightarrow many rules, but many of them very "uncertain" Typical Values: $\sigma = 2 \div 10 \%$ $\gamma = 70 \div 90 \%$

Association Rules - visualization

(Patients <15 old for USL 19 (a unit of Sanitary service), January-September 1997)



Association Rules – bank transactions

Step 1: Create groups of customers (cluster) on the base of demographical data.

Step 2: Describe customers of each cluster by mining association rules.

Example:

Rules on cluster 6 (23,7% of dataset):

Group	Support	Confide	nce	Body	> llead
1	D .277	91.4	-	1.3	[TERH DEPOSITS] AND [BUSINESS CREDIT CARD] AND [TELEBANKING] AND [DUSINESS SAVINGS] =>> [SAVINGS]
1	8.164	86.4		1.3	[TERH DEPOSITS] AND [ATH CARD] AND [BUSINESS CREDIT CARD] AND [TELEBANKING] AND [BUSINESS SAUINGS] > [SAUINGS]
1	0.104	85.7	-	1.9	[SAVINGS] AND [INTERNET BANKING] AND [LEASES] > [TELEDANKING]
1	0.138	84.2	-	1.2	[PERSONAL BANKING] AND [TERM DEPOSITS] AND [BUSINESS CREDIT CARD] AND [DUSINESS SAVINGS] =>> [SAVINGS]
1	8.251	82.9	-	1.2	[TERH DEPOSITS] AND [ATH CARD] AND [TELEBANKING] AND [BUSINESS SAUINGS] > [SAUINGS]
1	0.328	82.6	-	1.2	[ATH CARD] AND [BUSINESS CREDIT CARD] AND [TELEBANKING] AND [DUSINESS SAVINGS] =>> [SAVINGS]
1	8.242	82.4	-	1.2	[PERSONAL DANILING] AND [TERM DEPOSITS] AND [DUSINESS SAVINGS] ==> [SAVINGS]
1	8.631	81.1	-	1.2	[BUSINESS CREDIT CARD] AND [TELEBANKING] AND [BUSINESS SAVINGS] ==> [SAVINGS]
1	8.138	89.6	-	1.2	[ATH CARÒ] AND [DÙSINESS CREDIT CAND] AND [TELEBANKING] AND [INTERNET BANKING] AND [BUSINESS SAUINGS] > [SAUINGS]
1	0.138	89.0	•	1.2	TERH DEPOSITS] AND TEL
1	0.458	79.1	-	1.2	[TERH DEPOSITS] AND [TELEBANKING] AND [BUSINESS SAVINGS] > [SAVINGS]
1	0.130	78.9	-	1.2	[PERSONAÌ BANKINĜ] AND [BUSINESS CREDIT CARD] AND [TELEBANKING] And [Dusiness Savings] =>> [Savings]
1	8.346	78.4	•	1.2	[PERSONAL BANKING] AND [DUSINESS CREDIT CARD] AND [BUSINESS SAUINGS] > [Sauings]
1	1.037	77.9	-	1.1	TTERH DEPOSITS AND FATH CARD] AND [BUSINESS CREDIT CARD] AND [TELEDANKING] AND [INTERNET BANKING] => FSAUINGS]
1	0.182	77.8	-	1.7	[TERH DEPOSITS] AND [ATH CARD] AND [INTERNET DANKING] AND [BUSINESS SAUINGS] (=>) [BUSINESS CRIEDIT CARD]

50

Cluster 6 (23.7% of customers)

0.0000000000000000000000000000000000000	<u></u>				
Group	Support	Confiden	ice	Body	> llead 💥
1	0.277	91.4	-	1.3	[TERM DEPOSITS] AND [BUSINESS CREDIT CARD] AND [TELEBANKING]
					AND [BUSINESS SAVINGS]
					==> [SAVINGS]
1	0.164	86.4	-	1.3	[TERH DEPOSITS] AND [ATH CARD] AND [BUSINESS CREDIT CARD]
					AND [TELEBANKING] AND [BUSINESS SAVINGS]
					> [SAVINGS]
1	0.104	85.7	-	1.9	[SAVINGS] AND [INTERNET BANKING] AND [LEASES]
	- 400	a			> [TELEDANKING]
1	0.138	84.2	-	1.2	[PERSONAL BANKING] AND [TERM DEPOSITS] AND [BUSINESS CREDIT CARD]
					AND [BUSINESS SAVINGS] ==> [SAVINGS]
	8.251	82.9		1.2	[TERH DEPOSITS] AND [ATH CARD] AND [TELEBANKING]
	0.251	82.7	-	1.2	AND [BUSINESS SAVINGS]
					=-> [SAVINGS]
1	0.328	82.6	-	1.2	[ATH CARD] AND [BUSINESS CREDIT CARD] AND [TELEBANKING]
		0211	-		AND [BUSINESS SAVINGS]
					==> [SAVINGS]
1	8.242	82.4		1.2	[PERSONAL DANKING] AND [TERM DEPOSITS] AND [DUSINESS SAVINGS]
					==> [SAVINGS]
1	0.631	81.1	-	1.2	[BUSINESS CREDIT CARD] AND [TELEBANKING] AND [BUSINESS SAVINGS]
					==> [SAVINGS]
1	0.130	89.0	-	1.2	[ATH CARD] AND [BUSINESS CREDIT CARD] AND [TELEBANKING]
					AND [INTERNET BANKING] AND [BUSINESS SAVINGS]
					> [SAVINGS]
1	0.138	80.0	-	1.2	[TERH DEPOSITS] AND [TEL
	B 1 C 0	70 1		1 0	> [SAVINGS]
	0.458	79.1	-	1.2	[TERM DEPOSITS] AND [TELEBANKING] AND [BUSINESS SAVINGS] > [SAVINGS]
4	0.130	78.9		1.2	> [SAVINGS] [PERSONAL BANKING] AND [BUSINESS CREDIT CARD] AND [TELEBANKING]
	0.130	70.7	-	1.2	AND [BUSINESS SAVINGS]
					=> [SAVINGS]
1	8.346	78.4	-	1.2	[PERSONAL BANKING] AND [BUSINESS CREDIT CARD]
			-		AND [BUSINESS SAVINGS]
					> [SAVINGS]
1	1.037	77.9		1.1	[TERH DEPOSITS] AND [ATH CARD] AND [BUSINESS CREDIT CARD]
					ÀND [TELEDANKING] AND [INTERNÉT BANKING]
					==> [SAVINGS]
1	0.182	77.8	-	1.7	[TERH DEPOSITS] AND [ATH CARD] AND [INTERNET BANKING]
					AND [BUSINESS SAVINGS]
					> [DUSINESS CREDIT CARD]

Table (6.1)

Customer ID	Transaction ID	Items Bought
1	0001	$\{a, d, e\}$
1	0024	$\{a, b, c, e\}$
2	0012	$\{a, b, d, e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b, d, e\}$
4	0029	$\{c, d\}$
4	0040	$\{a, b, c\}$
5	0033	$\{a, d, e\}$
5	0038	$\{a,b,e\}$

Support?: e, (b,d), (b,d,e) Data Mining 2017-2018 Reg. Ass.

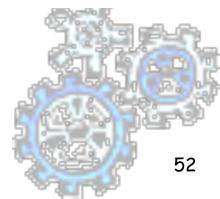
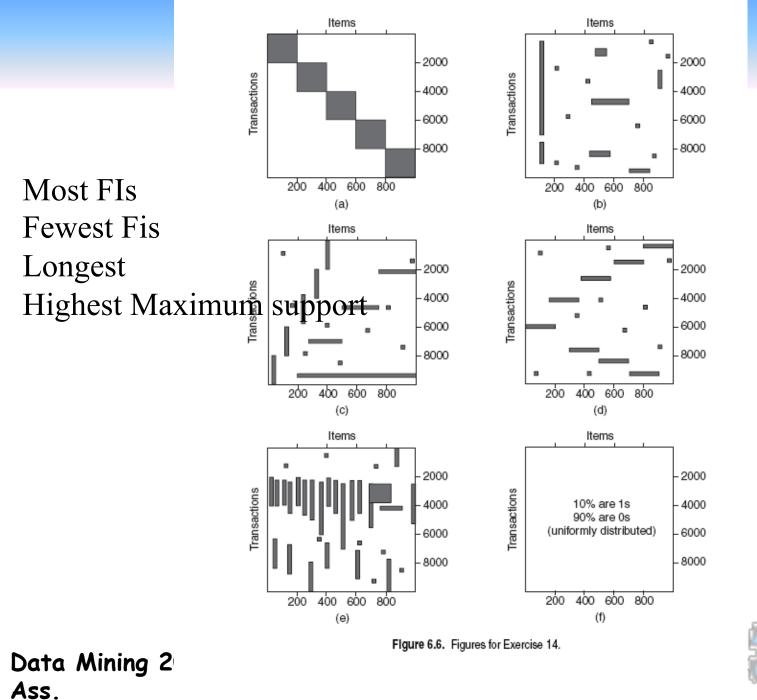
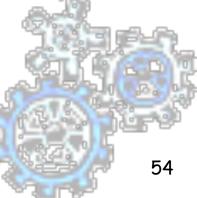


Table 6.2. Market basket transactions.

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

Max size of itemset, 2-itemsets with larger support Data Mining 2017-2018 Reg. Ass.





Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

<n.>

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

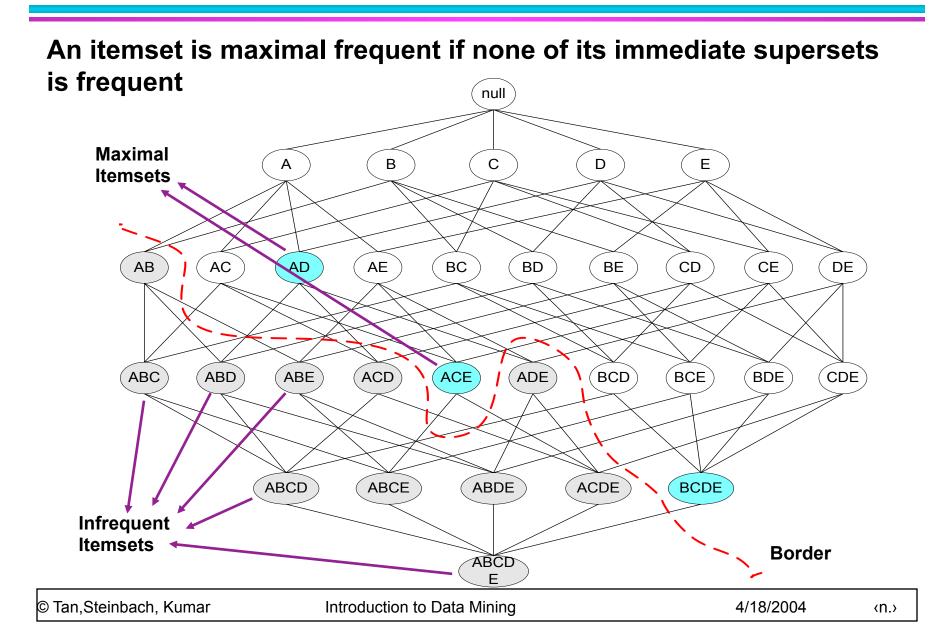
TID	A1	A2	A 3	A4	A5	A6	A7	A 8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B 8	B 9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Number of frequent itemsets =
$$3 \times \sum_{k=1}^{10} \binom{10}{k}$$

Need a compact representation

© Tan,Steinbach, Kumar

Maximal Frequent Itemset



Closed Itemset

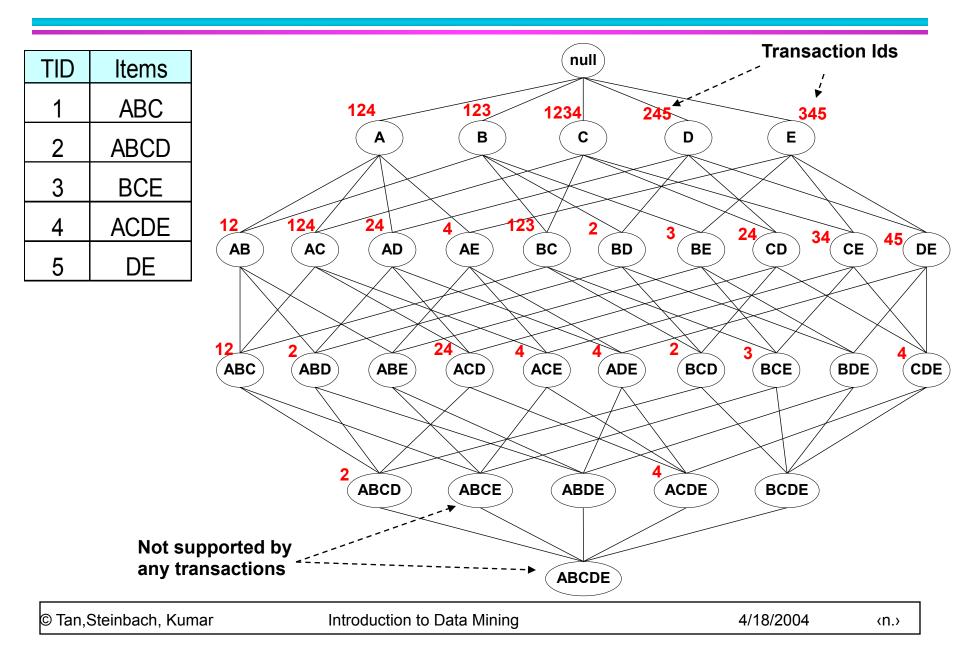
 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	ltems
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

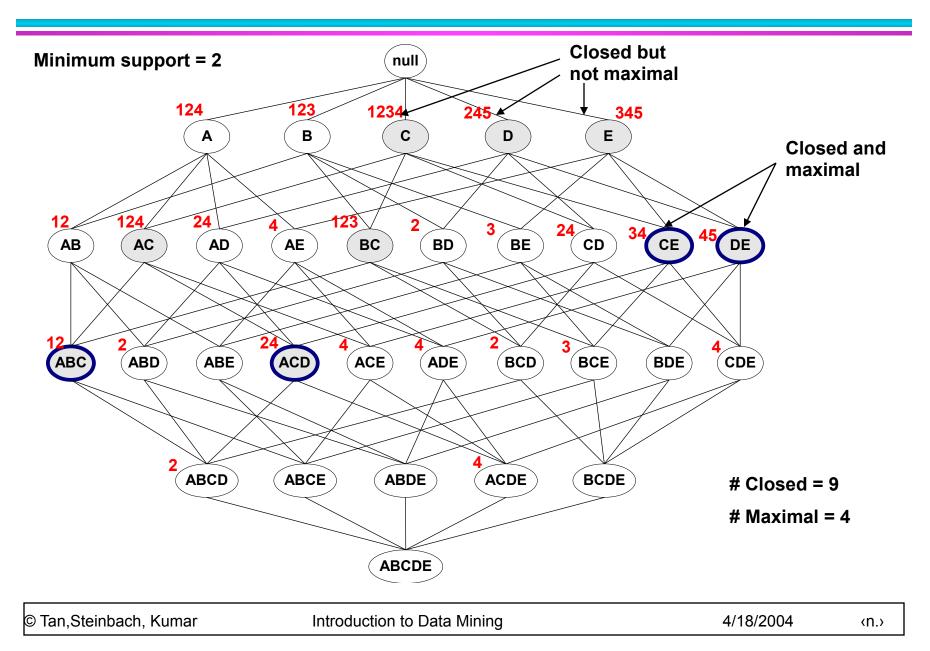
Itemset	Support			
{A}	4			
{B}	5			
{C}	3			
{D}	4			
{A,B}	4			
{A,C}	2			
{A,D}	3			
{B,C}	3			
{B,D}	4			
{C,D}	3			

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

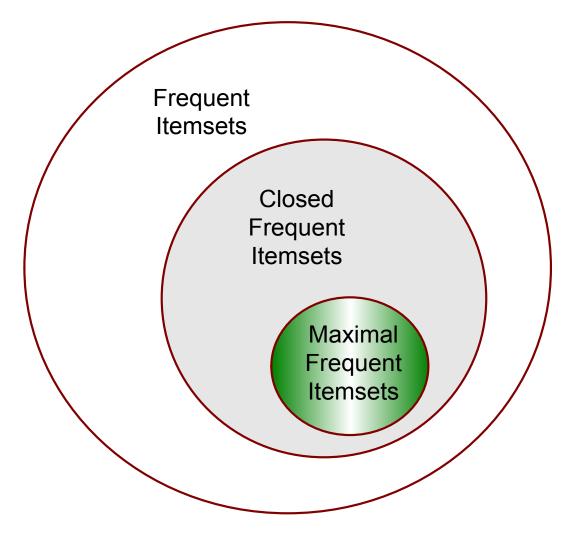
Maximal vs Closed Itemsets



Maximal vs Closed Frequent Itemsets



Maximal vs Closed Itemsets



Association rules - module outline

What are association rules (AR) and what are they used for:

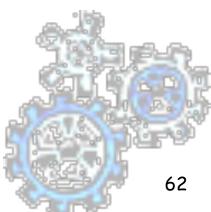
- The paradigmatic application: Market Basket Analysis
- The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR
- Constrained AR

How to reason on AR and how to evaluate their quality

- Multiple-level AR
- Interestingness
- Correlation vs. Association



Multidimensional AR

Associations between values of different attributes :

CID	nationality	age	income
1	Italian	50	low
2	French	40	high
3	French	30	high
4	Italian	50	medium
5	Italian	45	high
6	French	35	high

RULES:

nationality = French \Rightarrow income = high [50%, 100%]income = high \Rightarrow nationality = French [50%, 75%]age = 50 \Rightarrow nationality = Italian [33%, 100%]

Single-dimensional vs multi-dimensional AR

Single-dimensional (Intra-attribute)

The events are: *items A*, *B* and *C* belong to the same transaction

Occurrence of events: transactions

Multi-dimensional (Inter-attribute)

The events are : attribute A assumes value a, attribute B assumes value b and attribute C assumes value c.

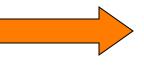
64

Occurrence of events: *tuples*

Single-dimensional vs Multi-dimensional AR

Multi-dimensional

<1, Italian, 50, low> <2, French, 45, high>



Single-dimensional

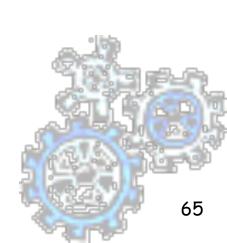
<1, {nat/Ita, age/50, inc/low}><2, {nat/Fre, age/45, inc/high}>

Schema: <ID, a?, b?, c?, d?>

<1, yes, yes, no, no>

<2, yes, no, yes, no>

<1, {a, b}> <2, {a, c}>



Quantitative Attributes

Quantitative attributes (e.g. age, income)
 Categorical attributes (e.g. color of car)

CID	height	weight	income
1	168	75,4	30,5
2	175	80,0	20,3
3	174	75,4 80,0 70,3 65,2	25,8
4	170	65,2	30,5 20,3 25,8 27,0

Problem: too many distinct values Solution: transform quantitative attributes in categorical ones via discretization.

66

Quantitative Association Rules

CID	Age	Married	NumCars
1	23	No	1
2	25	Yes	1
3	29	No	0
4	34	Yes	2
5	38	Yes	2

[Age: 30..39] and [Married: Yes] \Rightarrow [NumCars:2]

support = 40%
confidence = 100%

67

Data Mining 2017-2018 Reg. Ass.

Discretization of quantitative attributes

Solution: each value is replaced by the interval to which it belongs.

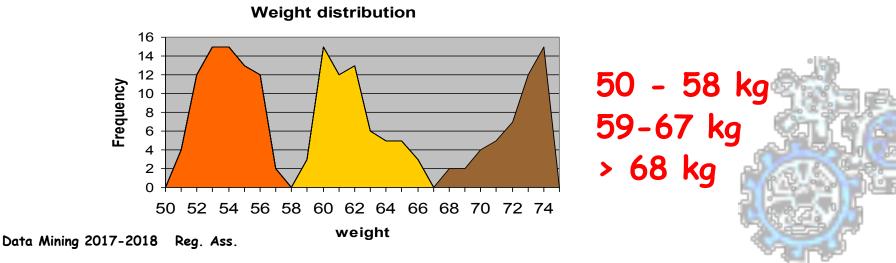
height: 0-150cm, 151-170cm, 171-180cm, >180cm weight: 0-40kg, 41-60kg, 60-80kg, >80kg income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- 3. Interval size determined by analyzing data, studying the distribution or using clustering



69

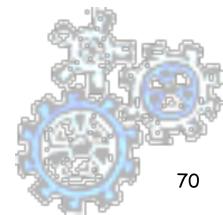
Discretization of quantitative attributes

- 1. Quantitative attributes are statically discretized by using predefined concept hierarchies:
 - elementary use of background knowledge

Loose interaction between Apriori and discretizer

- 2. Quantitative attributes are dynamically discretized
 - into "bins" based on the distribution of the data.
 - considering the distance between data points.

Tighter interaction between Apriori and discretizer



Quantitative Association Rules

	RecordID	Age	Married	NumCars
	100	23	No	1
	200	25	Yes	1
	300	29	No	0
~	400	34	Yes	2
	500	38	Yes	2

1	Sample Rules	Support	Confidence
	<age:3039> and <married: yes=""> ==> <numcars:2></numcars:2></married:></age:3039>	40%	100%
	<numcars: 01=""> ==> <married: no=""></married:></numcars:>	40%	66.70%

Handling quantitative rules may require mapping of the continuous variables into Boolean

Mapping Quantitative to Boolean

- One possible solution is to map the problem to the Boolean association rules:
 - discretize a non-categorical attribute to intervals, e.g., Age [20,29],
 [30,39],...
 - categorical attributes: each value becomes one item
 - non-categorical attributes: each interval becomes one item

	00 00	23 38	No Yes	1
50	00	38	Voc	
		00	165	2
				<u></u>
rried:	Cars	:Ca	rs: Car	s: 📴 🛋
No	0	1	1 2	
1	0	1	1 0	م الد
0	0	() 1	
				rried: Cars: Cars: Cars No 0 1 2 1 0 1 0 0 0 0 1

Constraints and AR

- Preprocessing: use constraints to focus on a subset of transactions
 - Example: find association rules where the prices of all items are at most 200 Euro
- Optimizations: use constraints to optimize Apriori algorithm
 - Anti-monotonicity: when a set violates the constraint, so does any of its supersets.

73

- Apriori algorithm uses this property for pruning
- Push constraints as deep as possible inside the frequent set computation

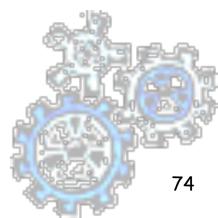
Constraint-based AR

What kinds of constraints can be used in mining?

- Data constraints:
 - ✓ SQL-like queries
 - Find product pairs sold together in Vancouver in Dec.'98.
 - ✓ OLAP-like queries (Dimension/level)
 - in relevance to region, price, brand, customer category.

Rule constraints:

- specify the form or property of rules to be mined.
- ✓ Constraint-based AR



Rule Constraints

Two kind of constraints:

- Rule form constraints: meta-rule guided mining.
 ✓ P(x, y) ^ Q(x, w) → takes(x, "database systems").
- Rule content constraint: constraint-based query optimization (Ng, et al., SIGMOD'98).
 ✓ sum(LHS) < 100 ^ min(LHS) > 20 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD'99):
 - 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 - 2-var: A constraint confining both sides (L and R).

✓ sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)

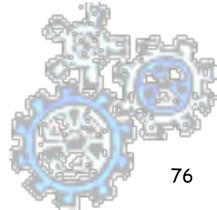
Mining Association Rules with Constraints

Postprocessing

A naïve solution: apply Apriori for finding all frequent sets, and then to test them for constraint satisfaction one by one.

Optimization

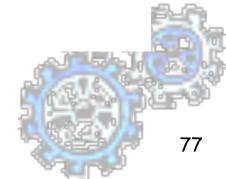
 Han approach: comprehensive analysis of the properties of constraints and try to push them as deeply as possible inside the frequent set computation.



Exercise 6

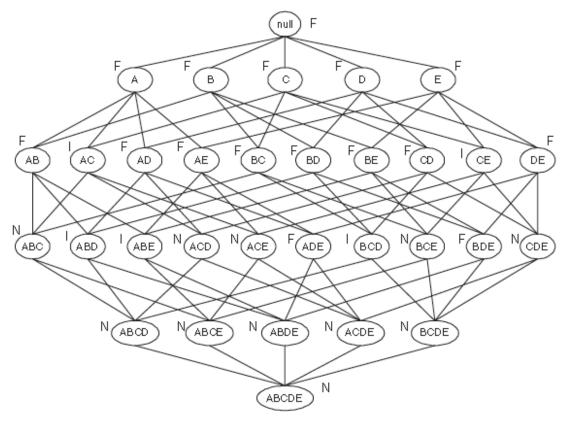
TUDIE V.V. EXAMPLE OF MAINET DASNET TRADAGUISTS.

Transaction ID	Items Bought
1	$\{a, b, d, e\}$
2	$\{b, c, d\}$
3	$\{a, b, d, e\}$
4	$\{a, c, d, e\}$
5	$\{b, c, d, e\}$
6	$\{b, d, e\}$
7	$\{c,d\}$
8	$\{a, b, c\}$
9	$\{a, d, e\}$
10	$\{b,d\}$



Data Mining 2017-2018 Reg. Ass.

Exercise 8 Solution



· · · · ·

78

Data Mining 2017-2018 Reg. Ass.

Association rules - module outline

What are association rules (AR) and what are they used for:

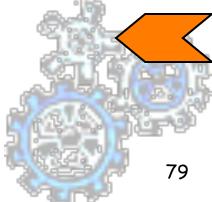
- The paradigmatic application: Market Basket Analysis
- The single dimensional AR (intra-attribute)

How to compute AR

- Basic Apriori Algorithm and its optimizations
- Multi-Dimension AR (inter-attribute)
- Quantitative AR
- Constrained AR

How to reason on AR and how to evaluate their quality

- Multiple-level AR
- Interestingness
- Correlation vs. Association

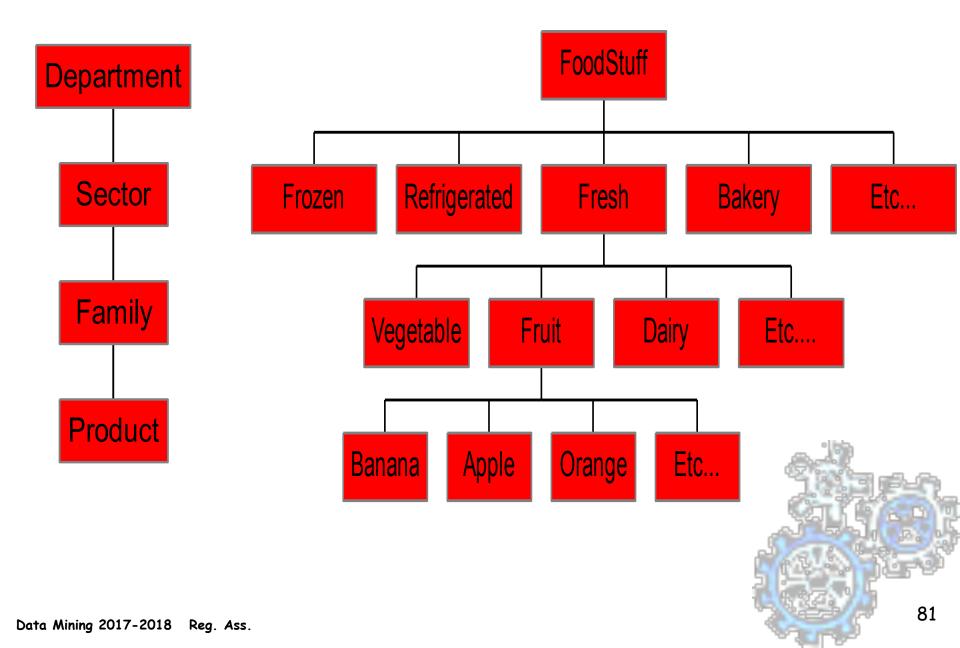


Multilevel AR

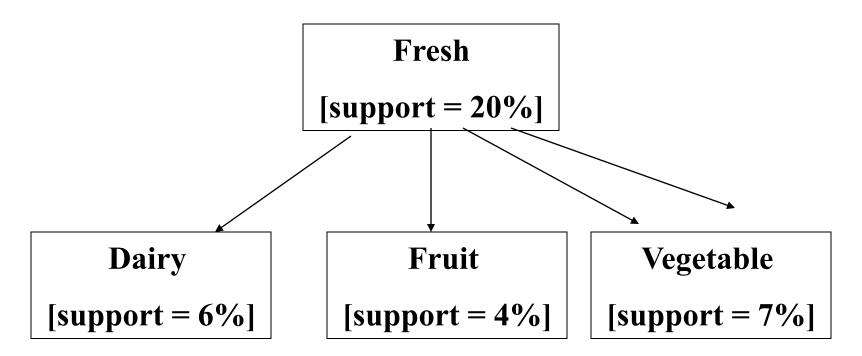
Is difficult to find interesting patterns at a too primitive level

- high support = too few rules
- Iow support = too many rules, most uninteresting
- Approach: reason at suitable level of abstraction
- A common form of background knowledge is that an attribute may be generalized or specialized according to a hierarchy of concepts
- Dimensions and levels can be efficiently encoded in transactions
- Multilevel Association Rules : rules which combine associations with hierarchy of concepts

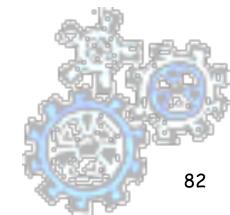
Mierarchy of concepts



Multilevel AR

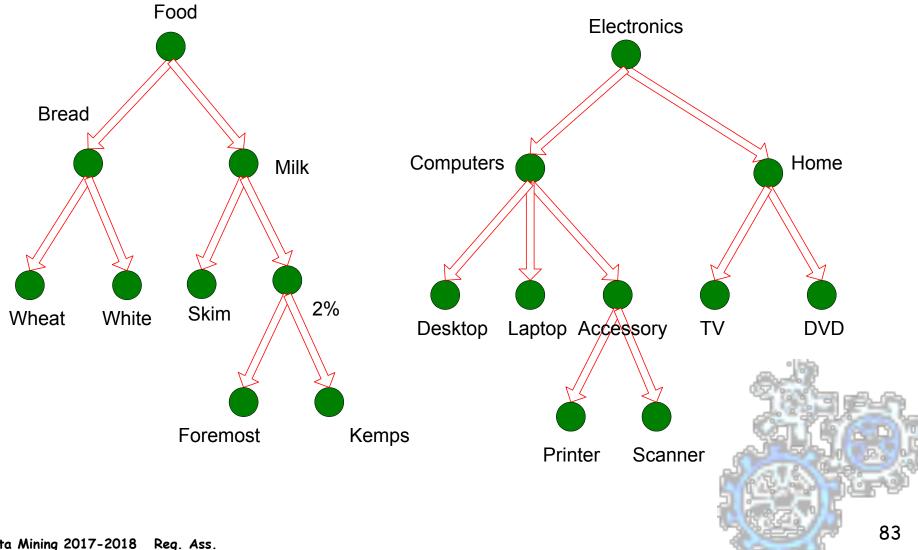


Fresh ⇒ Bakery [20%, 60%] Dairy ⇒ Bread [6%, 50%] Fruit ⇒ Bread [1%, 50%] is not valid



Data Mining 2017-2018 Reg. Ass.

Multi-level Association Rules



Data Mining 2017-2018

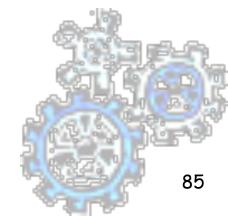
Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ✓ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.

are indicative of association between milk and bread

Support and Confidence of Multilevel AR

- from specialized to general: support of rules increases (new rules may become valid)
- from general to specialized: support of rules decreases (rules may become not valid, their support falls under the threshold)
 Confidence is not affected

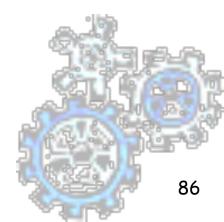


Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \leq \sigma(X1) + \sigma(X2)$

 If σ(X1 ∪ Y1) ≥ minsup, and X is parent of X1, Y is parent of Y1 then σ(X ∪ Y1) ≥ minsup, σ(X1 ∪ Y) ≥ minsup σ(X ∪ Y) ≥ minsup

■ If $conf(X1 \Rightarrow Y1) \ge minconf,$ then $conf(X1 \Rightarrow Y) \ge minconf$



Reasoning with Multilevel AR

- Too low level => too many rules and too primitive. Example: Apple Melinda => Colgate Tooth-paste It is a curiosity not a behavior
- Too high level => uninteresting rules Example: Foodstuff => Varia
- Redundancy => some rules may be redundant due to "ancestor" relationships between items.
 - A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.
- Example (milk has 4 subclasses)
 - milk ⇒ wheat bread, [support = 8%, confidence = 70%]
 - 2%-milk ⇒ wheat bread, [support = 2%, confidence = 72%]

Mining Multilevel AR

- Calculate frequent itemsets at each concept level, until no more frequent itemsets can be found
- For each level use Apriori
- A top_down, progressive deepening approach:
 - First find high-level strong rules:

fresh \rightarrow bakery [20%, 60%].

Then find their lower-level "weaker" rules:

fruit \rightarrow bread [6%, 50%].

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

fruit \rightarrow wheat bread

Association rules with multiple, alternative hierarchies:

fruit \rightarrow Wonder bread

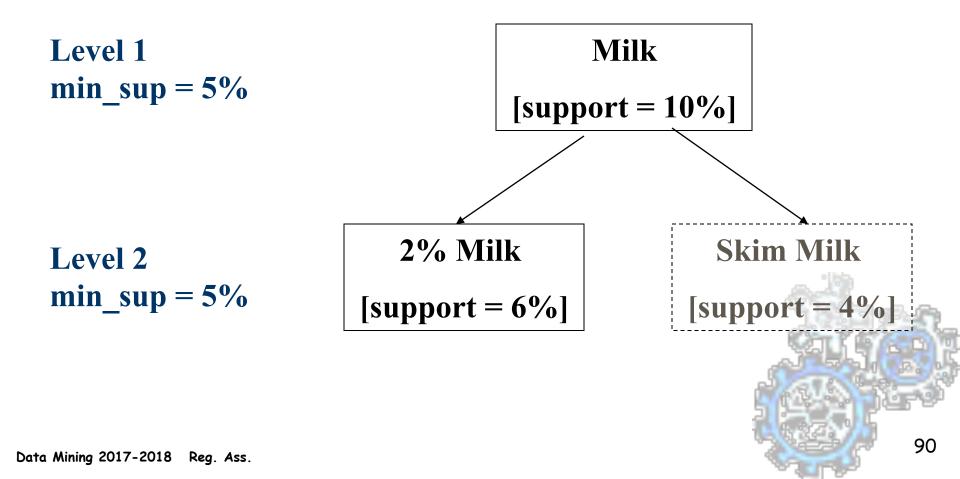
Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - If support threshold
 - too high \Rightarrow miss low level associations.
 - too low \Rightarrow generate too many high level associations.

Reduced Support: reduced minimum support at lower levels - different strategies possible

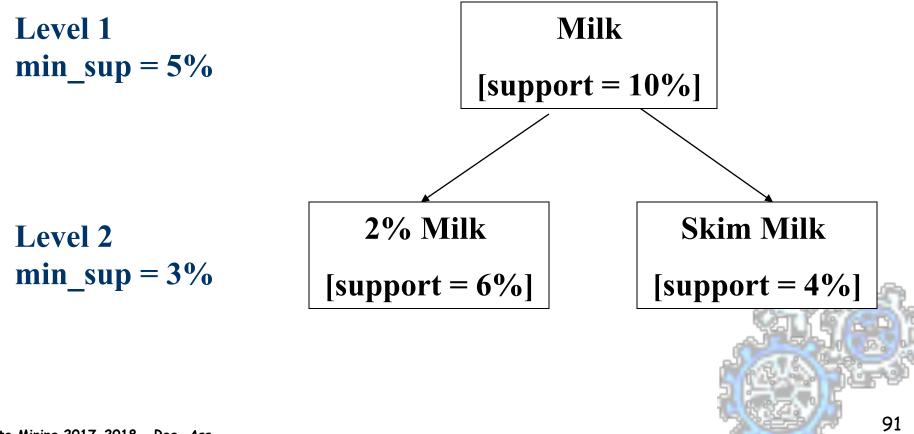
Uniform Support

Multi-level mining with uniform support



Reduced Support

Multi-level mining with reduced support



Beyond Support and Confidence

Exa	mple	1: (/	Aggarwal d	& Yu,	PODS	98)
			coffee	not coff	fee	sum(row)

	001100		
tea	20	5	25
not tea	70	5	75
sum(col.)	90	10	100

- {tea} => {coffee} has high support (20%) and confidence (80%)
- However, a priori probability that a customer buys coffee is 90%
 - A customer who is known to buy tea is less likely to buy coffee (by 10%)
 - There is a negative correlation between buying tea and buying coffee
 - {~tea} => {coffee} has higher confidence(93%)

Statistical Independence

Population of 1000 students

- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)
- P(S∧B) = 420/1000 = 0.42
- P(S) × P(B) = 0.6 × 0.7 = 0.42
- P(SAB) = P(S) × P(B) => Statistical independence
- P(SAB) > P(S) × P(B) => Positively correlated
- P(SAB) < P(S) × P(B) => Negatively correlated

Correlation and Interest

- Two events are independent if P(A A B) = P(A)*P(B), otherwise are correlated.
- Interest = $P(A \land B) / P(B)*P(A)$
- Interest expresses measure of correlation
 - = $1 \Rightarrow A$ and B are independent events
 - less than $1 \Rightarrow A$ and B negatively correlated,
 - greater than $1 \Rightarrow A$ and B positively correlated.
 - In our example, I(buy tea buy coffee)=0.89 i.e. they are negatively correlated.

Computing Interestingness Measure

■ Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	У	Y	
X	f ₁₁	f ₁₀	f ₁₊
×	f ₀₁	f ₀₀	f₀₊
	f ₊₁	f ₊₀	T

 $\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of X and Y} \\ f_{01} : \text{ support of X and Y} \\ f_{00} : \text{ support of X and Y} \end{array}$

 Used to define various measures
 support, confidence, lift, Gini, J-measure, etc.

Statistical-based Measures

Measures that take into account statistical dependence

$$\begin{split} Lift &= \frac{P(Y \mid X)}{P(Y)} \\ Interest &= \frac{P(X,Y)}{P(X)P(Y)} \\ PS &= P(X,Y) - P(X)P(Y) \\ \phi - coefficient &= \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}} \end{split}$$

Example: Lift/Interest

	Coffe e	Coffe e	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

97

Drawback of Lift & Interest

	У	У	
×	10	0	10
хı	0	90	90
	10	90	100

	У	y	
X	90	0	90
×	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If P(X,Y)=P(X)P(Y) => Lift = 1

There are lots of
measures proposed
in the literature

	#	Measure	Formula
There are late of	1	ϕ -coefficient	$\frac{P(A,B) - P(A)P(B)}{\left(\frac{P(A)P(B)}{P(A)P(B)}\right)}$
There are lots of	0	C_{1} , d_{1} , d_{2} , W_{1} , d_{2} , M_{2} , M_{2} , M_{2}	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}}{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{2-\max_{j} P(A_{j})-\max_{k} P(B_{k})}{P(A,B)P(\overline{A},\overline{B})}$
in the literature	3	Odds ratio (α)	$\overline{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(AB)+P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},B)}+\sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are	6	Kappa (ĸ)	
good for certain	Ŷ	III III	$\frac{\overset{\bullet}{P}(A,B)+P(\overline{A},\overline{B})-\overset{\bullet}{P}(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}$
applications, but not	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} \Gamma(A_i, D_j) \log P(A_i) P(B_j)}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
for others	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})\Big)$
	9	Gini index (G)	$\max\left(P(A)[P(B A)^{2}+P(\overline{B} A)^{2}]+P(\overline{A})[P(B \overline{A})^{2}+P(\overline{B} \overline{A})^{2}]\right)$
What criteria should			$-P(B)^2 - P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^2 - P(\overline{A})^2$
is good or bad?	10	Support (s)	P(A,B)
ie geen er kann	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori		- ,,	$ \begin{pmatrix} NP(A)+2 & NP(B)+2 \\ P(A)P(\overline{B}) & P(B)P(\overline{A}) \end{pmatrix} $
What about Apriori-	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$ $P(A,B)$
style support based	14	Interest (I)	$\frac{P(A,P)}{P(A,P(B))}$
pruning? How does	15	$\cos ine (IS)$	$\frac{1}{\sqrt{P(A)P(B)}}$
it affect these	16	$\operatorname{Piatetsky-Shapiro's}\left(PS ight)$	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$ 99
Data Mining 2017-2018 Reg. Ass	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Properties of A Good Measure

Piatetsky-Shapiro:

- 3 properties a good measure M must satisfy:
 - M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

100

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

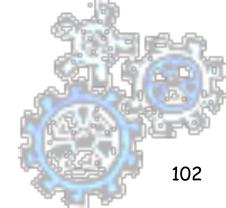
Rankings of contingency tables using various measures:

#	ϕ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	Ι	IS	PS	F	AV	S	ζ	K
E 1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
$\mathbf{E5}$	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Domain dependent measures

- Together with support, confidence, interest, ..., use also (in post-processing) domaindependent measures
- E.g., use rule constraints on rules
- Example: take only rules which are significant with respect their economic value

sum(LHS)+ sum(RHS) > 100



MBA in Web Usage Mining

Association Rules in Web Transactions

 discover affinities among sets of Web page references across user sessions

Examples

- 60% of clients who accessed /products/, also accessed /products/software/webminer.htm
- 30% of clients who accessed /special-offer.html, placed an online order in /products/software/
- Actual Example from IBM official Olympics Site:
 - ✓ {Badminton, Diving} ==> {Table Tennis} [conf = 69.7%, sup = 0.35%]

Applications

- Use rules to serve dynamic, customized contents to users
- prefetch files that are most likely to be accessed
- determine the best way to structure the Web site (site optimization)

103

Data Mining 2017-2018 Reg. Ass. Targeted electronic advertising and increasing cross sales

Web Usage Mining: Example

Association Rules From Cray Research Web Site

Conf	supp	Association Rule
82.8	3.17	/PUBLIC/product-info/T3E
		===>
		/PUBLIC/product-info/T3E/CRAY_T3E.html
90	0.14	/PUBLIC/product-info/J90/J90.html,
		/PUBLIC/product-info/T3E
		===>
		/PUBLIC/product-info/T3E/CRAY_T3E.html
97.2	0.15	/PUBLIC/product-info/J90,
		/PUBLIC/product-info/T3E/CRAY_T3E.html,
		/PUBLIC/product-info/T90,
		===>
		/PUBLIC/product-info/T3E,
		/PUBLIC/sc.html

Design "suggestions"

 from rules 1 and 2: there is something in J90.html that should be moved to th page /PUBLIC/product-info/T3E (why?)

MBA in Text / Web Content Mining

Documents Associations

- Find (content-based) associations among documents in a collection
- Documents correspond to items and words correspond to transactions
- Frequent itemsets are groups of docs in which many words occur in common

	Doc 1	Doc 2	Doc 3	 Doc n
business	5	5	2	 1
capital	2	4	3	 5
fund	0	0	0	 1
		:	:	 :
invest	6	0	0	 3

Term Associations

- Find associations among words based on their occurrences in documents
- similar to above, but invert the table (terms as items, and docs as transactions)

Data Mining 2017-2018 Reg. Ass.

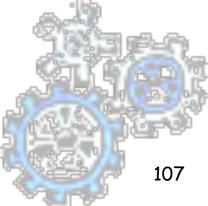
Atherosclerosis prevention study

2nd Department of Medicine, 1st Faculty of Medicine of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC)

> Data Mining 2017-2018 Reg. Ass.

Atherosclerosis prevention study:

- The STULONG 1 data set is a real database that keeps information about the study of the development of atherosclerosis risk factors in a population of middle aged men.
- Used for Discovery Challenge at PKDD 00-02-03-04



Atherosclerosis prevention study:

- Study on 1400 middle-aged men at Czech hospitals
 - Measurements concern development of cardiovascular disease and other health data in a series of exams
- The aim of this analysis is to look for associations between medical characteristics of patients and death causes.
 - Four tables
 - Entry and subsequent exams, questionnaire responses, deaths

108

The input data

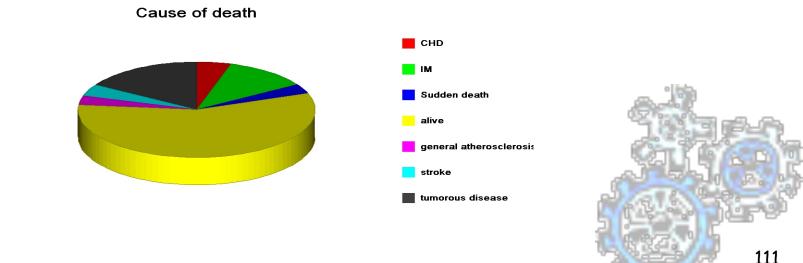
Data from Entry and Exams							
General characteristics	Examinations	habits					
Marital status	Chest pain	Alcohol					
Transport to a job	Breathlesness	Liquors					
Physical activity in a job	Cholesterol	Beer 10					
Activity after a job	Urine	Beer 12					
Education	Subscapular	Wine					
Responsibility	Triceps	Smoking					
Age		Former smoker					
Weight		Duration of smoking					
Height		Tea					
		Sugar					
		Coffee					

The input data

DEATH CAUSE	PATIENTS	%		
myocardial infarction	80	20.6		
coronary heart disease	33	8.5		
stroke	30	7.7		
other causes	79	20.3		
sudden death	23	5.9		
unknown	8	2.0		
tumorous disease	114	29.3		
general atherosclerosis	22	5.7		
TOTAL	389	100.0		

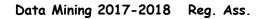
Data selection

- When joining "Entry" and "Death" tables we implicitely create a new attribute "Cause of death", which is set to "alive" for subjects present in the "Entry" table but not in the "Death" table.
- We have only 389 subjects in death table.



The prepared data

Patient	General characteristics		Examinations		Habits		Cause of
	Activity after work	Education	Chest pain		Alcohol		death
1	moderate activity	university	not present		no		Stroke
2	great activity		not ischaemic		occasionally		myocardial infarction
3	he mainly sits		other pains		regularly		tumorous disease
							alive
389	he mainly sits		other pains		regularly		tumorous disease



Descriptive Analysis/ Subgroup Discovery /Association Rules

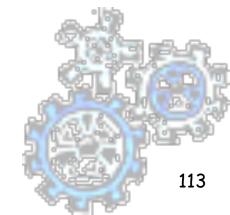
Are there strong relations concerning death cause?

General characteristics $(?) \Rightarrow$ Death cause (?)

Examinations $(?) \Rightarrow$ Death cause (?)

Habits (?) \Rightarrow Death cause (?)

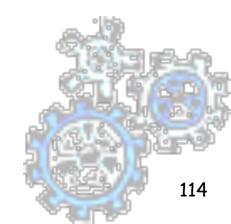
Combinations $(?) \Rightarrow$ Death cause (?)



Data Mining 2017-2018 Reg. Ass.

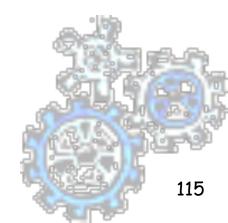
Example of extracted rules

- Education(university) & Height<176-180> ⇒Death cause (tumouros disease), 16; 0.62
- It means that on tumorous disease have died 16, i.e. 62% of patients with university education and with height 176-180 cm.



Example of extracted rules

- Physical activity in work(he mainly sits) & Height<176-180> ⇒ Death cause (tumouros disease), 24; 0.52
- It means that on tumorous disease have died 24 i.e. 52% of patients that mainly sit in the work and whose height is 176-180 cm.



Example of extracted rules

- Education(university) & Height<176-180> ⇒Death cause (tumouros disease), 16; 0.62; +1.1;
- the relative frequency of patients who died on tumorous disease among patients with university education and with height 176-180 cm is 110 per cent higher than the relative frequency of patients who died on tumorous disease among all the 389 observed patients

Conclusions

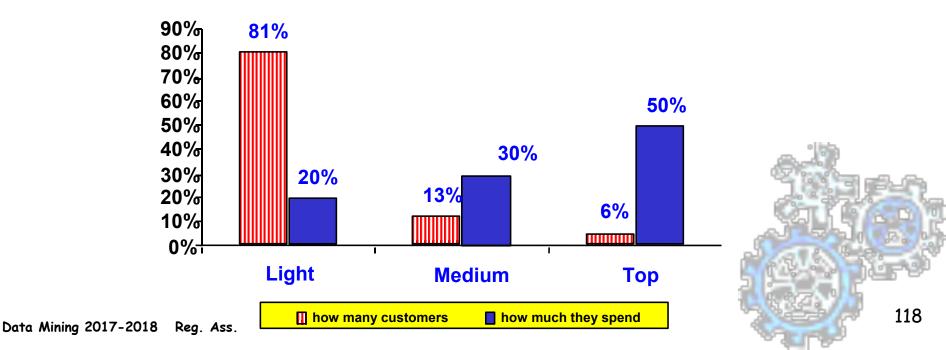
Association rule mining

- probably the most significant contribution from the database community to KDD
- A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: spatial data, multimedia data, time series data, etc.

117

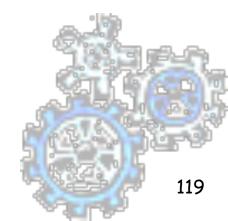
Conclusion (2)

- MBA is a key factor of success in the competition of supermarket retailers.
- Knowledge of customers and their purchasing behavior brings potentially huge added value.



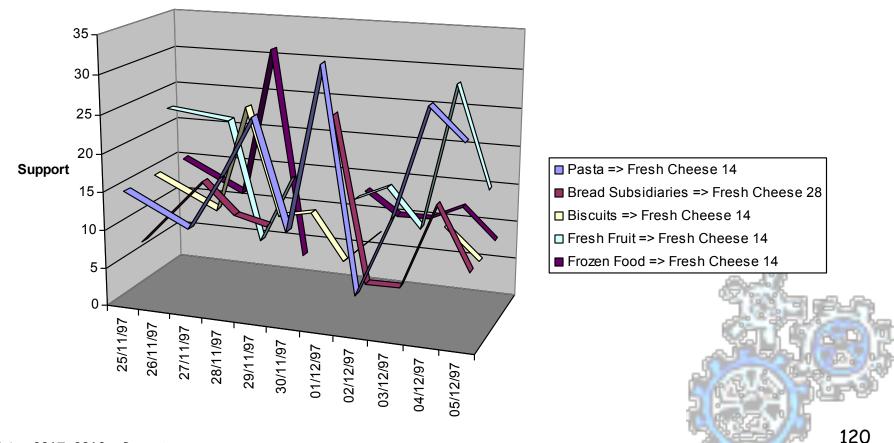
Which tools for market basket analysis?

- Association rule are needed but insufficient
- Market analysts ask for business rules:
 - Is supermarket assortment adequate for the company's target class of customers?
 - Is a promotional campaign effective in establishing a desired purchasing habit?



Business rules: temporal reasoning on AR

Which rules are established by a promotion?How do rules change along time?



References - Association rules

- R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.
- **R**. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487-499, Santiago, Chile.
- **R**. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan.
- **R**. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97, 265-276, Tucson, Arizona..
- D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. ICDE'96, 106-114, New Orleans, LA..
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canada.
- E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277–288, Tucson, Arizona.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich, Switzerland.
- M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. KDD'97, 207-210, Newport Beach, California.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.
- R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412–421, Orlando, FL.
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA.
- S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. VLDB'98, 368-379, New York, NY.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98, 343-354, Seattle, WA.

References - Association rules

- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95, 432-443, Zurich, Switzerland.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98, 594-605, New York, NY.
- **R**. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407–419, Zurich, Switzerland.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96, 1–12, Montreal, Canada.
- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73, Newport Beach, California.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412–421, Orlando, FL.
- **R**.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
- J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. ICDE'99, Sydney, Australia.
- F. Giannotti, G. Manco, D. Pedreschi and F. Turini. Experiences with a logic-based knowledge discovery support environment. In Proc. 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (SIGMOD'99 DMKD). Philadelphia, May 1999.
- F. Giannotti, M. Nanni, G. Manco, D. Pedreschi and F. Turini. Integration of Deduction and Induction for Mining Supermarket Sales Data. In Proc. PADD'99, Practical Application of Data Discovery, Int. Conference, London, April 1999.

