Analisi delle Reti Sociali

http://didawiki.cli.di.unipi.it/doku.php/dm/sna.ingegneria2011

Grafi e Proprietà delle reti

Fosca Giannotti & Michele Berlingerio, KDD Lab. ISTI-CNR kdd.isti.cnr.it/ fosca.giannotti@isti.cnr.it, michele.berlingerio@isti.cnr.it http://didawiki.cli.di.unipi.it/doku.php/wma/start

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Class Outline

- Basic network measures recall
- Basic network measures in Real network vs Random network social, technological, business, economic, content,…
- **First Social science hypotheses confirmed by large scale experiments** Small world: by Leskovec & Watts
- Second Social science hypotheses confirmed by large scale experiments
	- **.** Weak & strong ties
	- Clustering coefficent, triadic closure, bridges
- **Centrality Measures: betweness**

Biblio

- 1. Onnela 2007: Structure and tie strengths in mobile communication networksJ.-
- 2. Planetary-Scale Views on an Instant-Messaging Network∗Jure Leskovec
- 3. The strenght of Weak Ties, Mrk Ganovetter†
- 4. An Experimental Study of Search in Global Social NetworksPeter Sheridan Dodds,1 Roby Muhamad,2 Duncan J. Watts1,2*
- 5. An ExperimentalStudy of the Small World Problem*JEFFREY TRAVERS Harvard UniversityAND STANLEY MILGRAM

Basic measures

Degree distribution: P(k)

Path length: *l*

Clustering coefficient:

 $C_i = \frac{2e_i}{k_i(k_i-1)}$

Network Science: Graph Theory *January 24, 2011*

Degree distribution

P(k): probability that a randomly chosen vertex has degree k

Network Science: Graph Theory *January 24, 2011*

Diameter: the maximum distance between any pair of nodes in the graph.

Average path length/distance for a direct connected graph (component) or a strongly connected (component of a) digraph.

where l_{ii} is the distance from node *i* to node j

$$
\langle l \rangle \equiv \frac{1}{2L_{\text{max}}} \sum_{i,j \neq i} l_{ij}
$$

In an undirected (symmetrical) graph $l_{ij} = l_{ji}$, we only need to count them once

$$
\langle l \rangle = \frac{1}{L_{\text{max}}} \sum_{i,j>i} l_{ij} \qquad L_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}
$$

Clustering coefficient:

what portion of your neighbors are connected?

Node i with degree ki

 \triangle ci in $[0,1]$

- **Clustering coefficient:** what portion of your neighbors are connected?
	- ***** Node i with degree ki

i=8: k_8 =2, e_8 =1, $TOT=2*1/2=1$ \rightarrow $C_8=1/1=1$

Clustering coefficient: what portion of your neighbors are connected?

***** Node i with degree ki

i=4: k_4 =4, e_4 =2, TOTAL=4*3/2=6 \rightarrow C_4 =2/6=1/3

Topological Overlap Mutual Clustering

Topological Overlap Mutual Clustering

Topological Overlap Mutual Clustering

Analisi di reti sociali - Aprile 2011

Real networks vs random networks

Analisi di reti sociali - Aprile 2011

RANDOM NETWORK MODEL

Pául Erdös (1913-1996)

Erdös-Rényi model (1960)

Connect with probability p

p=1/6 N=10 $\langle k \rangle \sim 1.5$

RANDOM NETWORK MODEL

Definition: A **random graph** is a graph of N labeled nodes where each pair of nodes is connected by a preset probability **p**.

N and *p* do not uniquely define the network– we can have many different realizations of it. **How many?**

 $P(G(N,L)) = p^{L}(1-p)$ *N*(*N*−1) $\frac{1}{2}$ ⁻ The probability to form a *particular* graph **G(N,L)** is That is, each graph **G(N,L)**

appears with probability **P(G(N,L))**.

N=10

p=1/6

P(L): the probability to have a network of exactly *L* links

$$
P(L) = \binom{N}{2} p^{L} (1-p)^{\frac{N(N-1)}{2} - L}
$$

•The average number of links *<L>* in a random graph

$$
\langle L \rangle = \sum_{L=0}^{\frac{N(N-1)}{2}} LP(L) = p \frac{N(N-1)}{2} \qquad \qquad \langle k \rangle = 2L/N = p(N-1)
$$

•The standard deviation

$$
\sigma^2 = p(1-p)\frac{N(N-1)}{2}
$$

P(L): the probability to have exactly *L* links in a network of *N* nodes and probability *p*:

Binomial distribution...

DEGREE DISTRIBUTION OF A RANDOM GRAPH

$$
\langle k \rangle = p(N-1) \qquad \sigma_k^2 = p(1-p)(N-1)
$$

$$
\frac{\sigma_k}{\langle k \rangle} = \left[\frac{1-p}{p} \frac{1}{(N-1)} \right]^{1/2} \approx \frac{1}{(N-1)^{1/2}}
$$

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of <k>.

Random graphs tend to have a tree-like topology with almost constant node degrees.

- nr. of first neighbors:
- nr. of second neighbors:
- •nr. of neighbours at distance d:
- estimate maximum distance:

$$
1+\sum_{l=1}^{l_{max}}\left\langle k\right\rangle^i=N\bigg\} \qquad l_{max}=\frac{\log N}{\log\left\langle k\right\rangle}
$$

 $N_I \cong \langle k \rangle$
 $N_2 \cong \langle k \rangle^2$
 $N_d \cong \langle k \rangle^d$

Given the huge differences in scope, size, and average degree, the agreement is excellent.

•**Degree distribution**

" " *Binomial, Poisson (exponential tails)*

•**Clustering coefficient**

" " *Vanishing for large network sizes*

•**Average distance among nodes**

Logarithmically small

Are real networks like random graphs?

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

$$
\langle l_{rand} \rangle \approx \frac{\log N}{\log \langle k \rangle}
$$

Clustering Coefficient:

$$
C_{\text{rand}} = p = \frac{\langle k \rangle}{N}
$$

Degree Distribution:

$$
P_{rand}(k) \cong C_{N-1}^{k} p^{k} (1-p)^{N-1-k}
$$

$$
P(k) = e^{-} \frac{^{k}}{k!}
$$

PATH LENGTHS IN REAL NETWORKS

power grid and the second control of the secon

THE DEGREE DISTRIBUTION

Prediction:

$$
P_{rand}(k) \cong C_{N-1}^{k} p^{k} (1-p)^{N-1-k}
$$

Data:

 $P(k) \approx k^{-\gamma}$

- (b) Movie Actors;
- (c) Coauthorship, high energy physics;
- (d) Coauthorship, neuroscience

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

Clustering Coefficient:

Degree Distribution:

$$
\langle l_{rand} \rangle \approx \frac{\log N}{\log \langle k \rangle} \tag{3}
$$

$$
P_{\text{rand}}(k) \cong C_{N-1}^k p^k (1-p)^{N-1-k}
$$

 $l_{\alpha\alpha}$ M

Social network as Small World

Analisi di reti sociali - Aprile 2011

Six Degrees of Kevin Bacon

Origins of a small-world idea:

- Bacon number:
	- Create a network of Hollywood actors
	- Connect two actors if they coappeared in the movie
	- **Bacon number: number of steps to Kevin Bacon**
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon

EMs Presievihas a Bacon number of 2.

9/22/2010

 \blacksquare

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis

Analisi di reti sociali - Aprile 2011

The Small-world experiment

- What is the typical shortest path length between any two people?
	- **Experiment on the global friendship** network
		- Can't measure, need to probe explicitly
- The Small-world experiment [Stanley Milgram '67]
	- Picked 300 people at random
	- Ask them to get a letter to a by passing it through friends to a stockbroker in **Boston**
- How many steps does it take?

The Small-world experiment

- 64 chains completed:
	- 6.2 on the average, thus "6 degrees of separation"
- Further observations:
	- People what owned stock had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
	- **People from the Boston area have even closer** paths: 4.4

Milgram: Further observations

- People use different networks: **Boston vs. occupation**
- Criticism:
	- Funneling:

- 31 of 64 chains passed through 1 of 3 people ass their final step \rightarrow Not all links/nodes are equal
- Choice of starting points and the target were non-random
- People refuse to participate (25% for Milgram)
- Some sort of social search: People in the experiment follow some strategy (e.g., geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path.
- There are not many samples.
- People might have used extra information resources.
[Dodds-Muhamad-Watts, '03] Columbia small-world study

- . In 2003 Dodds, Muhamad and Watts performed the experiment using email:
	- 18 targets of various backgrounds
	- 24,000 first steps $(2,500)$ per target)
	- 65% dropout per step
	- 384 chains completed (1.5%)

Avg. chain length = 4.01 PROBLEM: Huge drop-out rate, i.e., longer chains are less likely to complete

Correcting for the drop-out rate

■ Huge drop-out rate:

- Longer chains don't complete Correction proposed by Harrison-White. Let:
	- \blacksquare f_i = true (unobserved) fraction of chains that would have length j
	- \blacksquare N = total # of starters
	- N_i = # starters who reached target in *j* steps
	- Then: $f_i^* := N_i/N$
	- Assume drop-out rate 1- α in each step, so $f_i^* := f_i \alpha^i$
	- \blacksquare $\sum_i f_i = 1$ \rightarrow $\sum_i f_i^* \alpha^i = 1$
	- Observe f_i^* , calculate the average dropout rate 1- α and then $\mathcal{L}_q = \mathcal{L}_q^* \propto^{-3}$

Small-world in soc. networks

C

- After the correction:
	- " Typical path length L=7 $(MEDIAN)$
- Some not well understood phenomena in social networks:
	- Funneling effect: some target's friends are more likely to be the final step.
		- Conjecture: High reputation/authority
	- **Effects of target's characteristics:** structurally why are high-status target easier to find
		- Conjecture: Core-periphery net structure

18 target persons: Status/Authority

18 target persons: Status/Authority

6-degrees: Should we be surprised?

- **E** Assume each human is connected to 100 other people:
- \blacksquare So:
	- ln step 1 she can reach 100 people
	- In step 2 she can reach $100*100 = 10,000$ people
	- In step 3 she can reach $100*100*100 = 100,000$ people
	- In 5 steps she can reach 10 billion people
- What's wrong here?
	- Many edges are local ("short"): friend of a friend

Planetary-Scale Views on an Instant-Messaging Network

∗Jure Leskovec†

Machine Learning DepartmentCarnegie Mellon University Pittsburgh, PA, USAEric HorvitzMicrosoft Research Redmond, WA, USAMicrosoft Research Technical Report MSR-TR-2006-186June 2007

IM experiment

■ Contact (buddy) list \blacksquare **Messaging window**

Analisi di reti sociali - Aprile 2011

Data statistics

- Data for June 2006
- \blacksquare Log size:

150Gb/day (compressed)

- Total: 1 month of communication data: 4.5Tb of compressed data
- Activity over June 2006 (30 days)
	- 245 million users logged in
	- 180 million users engaged in conversations
	- 17,5 million new accounts activated
	- More than 30 billion conversations
	- More than 255 billion exchanged messages

Data statistics: typical day

Activity on a typical day (June 1 2006):

- 1 billion conversations
- 93 million users login
- 65 million different users talk (exchange messages)
- 1.5 million invitations for new accounts sent

Messaging as a network

Analisi di reti sociali - Aprile 2011

IM communication network

$=$ Buddy graph

- 240 million people (people that login in June '06)
- 9.1 billion buddy edges (friendship links)
- Communication graph (take only 2-user conversations)
	- Edge if the users exchanged at least 1 message
	- 180 million people
	- 1.3 billion edges
	- 30 billion conversations

Network connectivity

Analisi di reti sociali - Aprile 2011

Strenght of weak ties in Social Networks

Analisi di reti sociali - Aprile 2011

Networks: Flow of information

- . How information flows through the network?
- How different nodes can play structurally roles in this process? distinct i
- How different links (short range vs. long range) play different roles in diffusion?

Strength of weak ties

- How people find out about new jobs?
	- Mark Granovetter, part of his PhD in 1960s
	- People find the information through personal contacts
- But: Contacts were often acquaintances rather than close friends
	- This is surprising:
		- One would expect your friends to help you out more than casual acquaintances when you are between the jobs
- Why is it that distance acquaintances are most helpful?

Granovetter's answer

- **Two perspectives on friendships:**
	- Structural:
		- **Figure 1** Friendships span different portions of the network
	- " Interpersonal:
		- **Example 1** Friendship between two people is either strong or weak

Granovetter's answer

- **Two perspectives on friendships:**
	- Structural:
		- **Figure 1** Friendships span different portions of the network
	- " Interpersonal:
		- **Example 1** Friendship between two people is either strong or weak

• Which edge is more likely A-B or A-D?

Triadic closure: If two people in a network have a $\mathcal{L}_{\mathcal{A}}$ friend in common there is an increased likelihood they will become friends themselves

Triadic closure

- **Triadic closure == High clustering coefficient** Reasons for triadic closure:
- **If B and C have a friend A in common, then:**
	- **B** is more likely to meet C
		- (since they both spend time with A)
	- B and C trust each other
		- (since they have a friend in common)
	- A has incentive to bring B and C together
		- (as it is hard for A to maintain two disjoint relationships)
- Empirical study by Bearman and Moody:
	- Teenage girls with low clustering coefficient are more likely to contemplate suicide

Triadic closure

- **Triadic closure == High clustering coefficient** Reasons for triadic closure:
- **If B and C have a friend A in common, then:**
	- **B** is more likely to meet C
		- (since they both spend time with A)
	- B and C trust each other
		- (since they have a friend in common)
	- A has incentive to bring B and C together
		- (as it is hard for A to maintain two disjoint relationships)
- Empirical study by Bearman and Moody:
	- Teenage girls with low clustering coefficient are more likely to contemplate suicide

Bridges and Local Bridges

■ Edge (A,B) is a bridge if deleting it would make A and B in be in two separate connected components.

Bridges and Local Bridges

- Edge (A,B) is a local bridge A and B have no friends in common
- Span of a local bridge is the distance of the edge endpoints if the edge is deleted

Analisi di reti sociali - Aprile 2011

Strong Triadic Closure

- Links in networks have strength:
	- Friendship
	- Communication
- \blacksquare We characterize links as either **Strong (friends) or Weak** (acquaintances)
- Def: Strong Triadic Closure **Property:** If A has strong links to B and C, then there must be a link (B,C) (that can be strong or weak)

Local Bridges and Weak ties

- Claim: If node A satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to A must be a weak tie.
- Proof by contradiction:
	- A satisfies Strong **Triadic Closure**
	- Let A-B be local bridge and a strong tie
	- Then B-C must exist because of Strong **Triadic Closure**
	- \blacksquare But then (A,B) is not a bridge

Summary of what we just did

- Defined Local Bridges:
	- Edges not in triangles
- Set two types of edges:
	- **Strong and Weak Ties**
- Defined Strong Triadic Closure:
	- Two strong ties imply a third edge
- \rightarrow Local bridges are weak ties

Tie strength in real data

- **For many years the Granovetter's theory was** not tested
- **But, today we have large who-talks-to-whom** graphs:
	- Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
	- Cell-phone network of 20% of country's population

Neighborhood Overlap

- Overlap: $O_{ii} = n(i) \cap n(j)$ $n(i)$ \cup $n(j)$
	- \blacksquare n(i) ... set of neighbors of A
- \blacksquare Overlap = 0 when an edge is a local bridge

Mobile phones: Overlap vs. Weight

Permuted weights: Keep the structure but randomly reassign edge weights

Betweenness centrality: Number of shortest paths going through an edge

Real network tie strengths

Real edge strengths in mobile call graph

Analisi di reti sociali - Aprile 2011

Permuted tie strenghts

- Same network, same set of edge strengths
- But now strengths are randomly shuffled $\mathcal{L}_{\mathcal{A}}$ over the edges

Link removal: Weight

- Removing links based on strength (# conversations) $\mathcal{L}_{\mathcal{A}}$
	- Low to high o.
	- High to low ×

Link removal: Overlap

- Removing links based on overlap
	- " Low to high
	- High to low

Centrality Measures

Measures of the "importance" of a node in a network

Analisi di reti sociali - Aprile 2011

Hollywood Revolves Around

Click on a name to see that person's table. Steiger, Rod (2.678695) Lee, Christopher (I) (2.684104) **Hopper, Dennis (2.698471) Sutherland, Donald (I) (2.701850) Keitel, Harvey (2.705573)** Pleasence, Donald (2.707490) von Sydow, Max (2.708420) Caine, Michael (I) (2.720621) Sheen, Martin (2.721361) **Quinn, Anthony (2.722720)** Heston, Charlton (2.722904) Hackman, Gene (2.725215) **Connery, Sean (2.730801)** Stanton, Harry Dean (2.737575) **Welles, Orson (2.744593)** Mitchum, Robert (2.745206) **Gould, Elliott (2.746082)** Plummer, Christopher (I) (2.746427) Coburn, James (2.746822) Borgnine, Ernest (2.747229)

Most Connected Actors in Hollywood

(measured in the late 90's)

XXX

A-L Barabasi, "Linked", 2002

betweenness LC Freeman - Sociometry, 1977 - jstor.org

Analisi di reti sociali - Aprile 2011

Analisi di reti sociali - Aprile 2011

How to compute betweenness?

■ Want to compute betweenness of paths starting at node A

■ Breath first search starting from A:

How to compute betweenness (2)

■ Count the number of shortest paths from A to all other nodes of the network:

How to compute betweenness (3)

■ Compute betweenness by working up the tree: If there are multiple paths count them fractionally

A *path is* a sequence of nodes in which each node is adjacent to the next one

 $P_{i0,in}$ of length *n* between nodes i₀ and i_n is an ordered collection of $n+1$ nodes and *n* links

$$
P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{ (i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n) \}
$$

•A path can intersect itself and pass through the same link repeatedly. Each time a link is crossed, it is counted separately

•A legitimate path on the graph on the right: **ABCBCADEEBA**

• In a directed network, the path can follow only the direction of an arrow.

