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Class Outline 

  Basic network measures - recall 
  Basic network measures  in Real network vs Random network 

 social, technological, business, economic, content,… 
  First Social science hypotheses confirmed by large scale experiments  

 Small world: by  Leskovec & Watts  
  Second Social science hypotheses confirmed by large scale experiments  

 Weak & strong ties 
 Clustering coefficent, triadic closure, bridges 

  Centrality Measures: betweness 
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Degree distribution: ! ! P(k)!

Path length: ! ! ! ! l! ! ! !

Clustering coefficient: 

Network Science: Graph Theory January 24, 2011!

KEY MEASURES!



Degree distribution "
P(k): probability that  a randomly chosen vertex has degree k"

Nk = # nodes with degree k!
P(k) = Nk / N     ➔   plot!

k!

P(k) 

1! 2! 3! 4!

0.1!
0.2!
0.3!
0.4!
0.5!
0.6!

Network Science: Graph Theory January 24, 2011!

DEGREE DISTRIBUTION!



Diameter: the maximum distance between any pair of nodes in the graph.  

Average path length/distance for a direct connected graph (component) 

or a strongly connected (component of a) digraph.  

                                     where lij is the distance from node i to node j 

In an undirected (symmetrical) graph lij =lji, we only need to count them once 

€ 

l ≡ 1
2Lmax

lij
i, j≠ i
∑

€ 

l ≡ 1
Lmax

lij
i, j> i
∑
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NETWORK DIAMETER AND AVERAGE DISTANCE!

€ 

Lmax =
N
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ =

N(N −1)
2
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"   Clustering coefficient: !
     what portion of your neighbors are connected?"

" Node i with degree ki"

" Ci in [0,1]"
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CLUSTERING COEFFICIENT!



"   Clustering coefficient: what portion of your 
neighbors are connected?"
"   Node i with degree ki"
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i=8:  k8=2,  e8=1,  TOT=2*1/2=1  ➔  C8=1/1=1!
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CLUSTERING COEFFICIENT!



"   Clustering coefficient: what portion of your 
neighbors are connected?"
"   Node i with degree ki"

i=4:  k4=4,  e4=2, TOTAL=4*3/2=6   ➔  C4=2/6=1/3!
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CLUSTERING COEFFICIENT!
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Real networks vs random 
networks 
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RANDOM NETWORK MODEL!

Network Science: Random Graphs January 31, 2011!

Erdös-Rényi model (1960)!

Connect with probability p"

p=1/6  N=10 "
〈k〉 ~ 1.5"

Pául Erdös!
(1913-1996)"



RANDOM NETWORK MODEL!
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Definition: A random graph is a graph of 
N labeled nodes where each pair of 
nodes is connected by a preset 
probability p."

A!
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RANDOM NETWORK MODEL!
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N and p do not uniquely define the 
network– we can have many different 
realizations of it. How many?"

€ 

P(G(N,L)) = pL (1− p)
N (N−1)
2

−L

N=10 !
p=1/6!

The probability to form a particular  graph G(N,L) is" That is, each graph G(N,L) 
appears with probability"
 P(G(N,L))."



RANDOM NETWORK MODEL!

P(L): the probability to have a network of exactly L links"

Network Science: Random Graphs January 31, 2011!

€ 

P(L) =
N
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< L >= LP(L) = p N(N −1)
2L= 0

N (N−1)
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∑

• The average number of links <L> in a random graph"

• The standard deviation"

€ 

σ2 = p(1− p) N(N −1)
2
€ 

< k >= 2L /N = p(N −1)



RANDOM NETWORK MODEL!

P(L): the probability to have exactly L links in a network of N nodes and probability p:"
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€ 

P(L) =
N
2
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The maximum number of links 
in a network of N nodes."

Number of different ways we can choose 
L links among all potential links."

Binomial distribution... 



DEGREE DISTRIBUTION OF A RANDOM GRAPH!
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As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>."

Select k "
nodes from N-1"

probability of "
having k edges"

probability of "
missing N-1-k"
edges"

€ 
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N −1
k
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DISTANCES IN RANDOM GRAPHS!

Random graphs tend to have a tree-like topology with almost constant node degrees."
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•  nr. of first neighbors:"

•  nr. of second neighbors:"

• nr. of neighbours at distance d: "

•  estimate maximum distance:"

€ 

Nd ≅ k d



Given the huge differences in scope, size, and average degree, the agreement is excellent."

DISTANCES IN RANDOM GRAPHS        compare with real data!
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• Degree distribution!
" " Binomial, Poisson (exponential tails)!

• Clustering coefficient!
" " Vanishing for large network sizes!

• Average distance among nodes!
" " Logarithmically small !

Erdös-Rényi MODEL (1960) !
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Are real networks like 
random graphs?!
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As quantitative data about real networks became available, we can"
compare their topology with the predictions of random graph theory."

Note that once we have  N and  <k> for a random network, from it we can derive every 
measurable property. Indeed, we have:"

Average path length:"

Clustering Coefficient: "

Degree Distribution:" € 

< lrand >≈
logN
log k

ARE REAL NETWORKS LIKE RANDOM GRAPHS?!
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€ 

P(k) = e−<k> < k >k

k!
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Internet

Real networks have short 
distances"
like random graphs. "

Prediction: ! Data:!

PATH LENGTHS IN REAL NETWORKS!
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Prediction: ! Data:!

Crand underestimates 
with orders of 
magnitudes the 
clustering coefficient of 
real networks. !

CLUSTERING COEFFICIENT!
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€ 

P(k) ≈ k −γ

Prediction: !

Data:!

(a)  Internet;"
(b)   Movie Actors;"
(c)  Coauthorship, high energy physics;"
(d) Coauthorship, neuroscience "

THE DEGREE DISTRIBUTION!
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As quantitative data about real networks became available, we can"
compare their topology with the predictions of random graph theory."

Note that once we have  N and  <k> for a random network, from it we can derive every 
measurable property. Indeed, we have:"

Average path length:"

Clustering Coefficient: "

Degree Distribution:" € 

< lrand >≈
logN
log k

ARE REAL NETWORKS LIKE RANDOM GRAPHS?!
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Social network as Small World 
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Planetary-Scale Views on an 
Instant-Messaging Network 

∗Jure Leskovec†  
Machine Learning DepartmentCarnegie Mellon University 

Pittsburgh, PA, USAEric HorvitzMicrosoft Research Redmond, 
WA, USAMicrosoft Research Technical Report MSR-

TR-2006-186June 2007 
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IM experiment 
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Data statistics 
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Data statistics: typical day  
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Messaging as a network 

Analisi di reti sociali - Aprile 2011 



IM communication network 
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Network connectivity 
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Network connectivity 
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Strenght of weak ties in Social 
Networks  
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Centrality Measures 

Measures of the “importance” of a node in a 
network 
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A path is a sequence of nodes in which  each node is adjacent to the next one"

Pi0,in  of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links "

€ 

Pn = {i0,i1,i2,...,in}

€ 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}

• A path can intersect itself and pass through the same 
link repeatedly. Each time a link is crossed, it is counted 
separately "

• A legitimate path on the graph on the right:  
ABCBCADEEBA!

•  In a directed network, the path can follow only the 
direction of an arrow. "

PATHS!

A!

B!

C!

D!

E!
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