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Why Mining Moving Object Data?

= Satellite, sensor, RFID, and wireless technologies have
been improved rapidly

= Prevalence of mobile devices, e.g., cell phones, smart
phones and PDAs

« GPS embedded in cars
« Telemetry attached on animals
= Tremendous amounts of trajectory data of moving objects

= Sampling rate could be every minute, or even every
second

= Data has been fast accumulated



Why Mining Moving Object Data?

= Large diffusion of mobile devices, mobile services
and location-based services




Why Mining Moving Object Data?

= Such devices leave digital traces that can be collected to obtrain
trajectories describing the mobility behavior of its owner

= Trajectory: a sequence of the location and timestamp of a moving
object
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What is a trajectory

= [rajectories are usually given as spatio-temporal (ST)
sequences: <(X{,Y1,t1), ooy (XsYsln)>
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Moving Object Data

s Several domains:
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Complexity of the Moving Object Data

= Uncertainty

= Sampling rate could be inconstant: From every few
seconds transmitting a signal to every few days
transmitting one

= Data can be sparse: A recorded location every 3 days
= Noise

= Erroneous points (e.g., a point in the ocean)
= Background

= Cars follow underlying road network

= Animals movements relate to mountains, lakes, ...
= Movement interactions

» Affected by nearby moving objects



Research Impacts

= Moving object and trajectory data mining has many
important, real-world applications driven by the real need

= Ecological analysis (e.g., animal scientists)

= Weather forecast

« Traffic control

= Location-based services

=« Homeland security (e.g., border monitoring)
=« Law enforcement (e.g., video surveillance)
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Moving Clusters

= A moving cluster is a set of objects that move close to
each other for a long time interval

= Note: Moving clusters and flock patterns (see later) are

essentially the same o O
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= Formal Definition [Kalnis et al., SSTD’05]:

= A moving cluster is a sequence of (snapshot) clusters
C,, C, ..., C, SUCh that for each timestamp / (1 £/ < k),
iciNc,/|lccUc,, /206 (0<6=<1)
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Retrieval of Moving Clusters

(Kalnis et al. SSTD'05)

= Basic algorithm (MC1)
1. Perform DBSCAN for each time slice

2. For each pair of a cluster ¢ and a moving cluster
g, check if g can be extended by ¢
=« If yes, g is used at the next iteration
= If no, g is returned as a result
= Improvements
= MC2: Avoid redundant checks (Improve Step 2)

= MC3: Reduce the number of executions of DBSCAN
(Improve Step 1)
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Relative Motion Patterns

(Laube et al. 04, Gudmundsson et al. 07)

Flock: At least m entities are within a circular region of radius r and
they move in the same direction

Leadership: At least m entities are within a circular region of radius r,
they move in the same direction, and at least one of the entities
was already heading in this direction for at least s time steps

Convergence: At least m entities will pass through the same
circular region of radius r (assuming they keep their direction)

Encounter: At least m entities will be simultaneously inside the
same circular region of radius r (assuming they keep their speed and
direction)

13



Relative Motion Patterns

(Laube et al. 04, Gudmundsson et al. 07)

= Flock (m> 1, r>0): At least m entities are within a circular region of
radius r and they move in the same direction

D1

D e \ ‘T*%\H/'

Pm

An example of a flock pattern for p,, p,, and p, at 8" time step; also a
leadership pattern with p, as the leader
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Relative Motion Patterns

(Laube et al. 04, Gudmundsson et al. 07)

Leadership (m> 1, r> 0, s > 0) At least m entities are within a
circular region of radius r, they move in the same direction, and at
least one of the entities was already heading in this direction for

at least s time steps

P1
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An example of leadership pattern with p, as the leader
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Relative Motion Patterns

(Laube et al. 04, Gudmundsson et al. 07)

Convergence (m > 1, r> 0) At least m entities will pass through the
same circular region of radius r (assuming they keep their direction)
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A convergence pattern if m =4 for p,, p;, p,, and ps

Encounter (m > 1, r> 0). Variant: at least m entities will be
simultaneously inside the same circular region of radius r
(assuming they keep their speed and direction)
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Complexity of Moving Relationship
Pattern Mining

= Algorithms: Exact and approximate algorithms are
developed

(Length tis multiplicative factor in all time bounds)

Pattern Exact (from [15]) Exact (new) Approximate
Flock O(nm* +n log 1) — O :ﬂ- log % + nlogn)
(radius)
Leadership O(ns +nm* +nlogn) - O(ns + E]f” log 3— + nlogn)
(radius)
Convergence O(n%) - D[frzﬁf{gﬁ‘rr]] (subset)
Oy (all) ﬂ[%.ﬂ2 logn) (radius)
Encounter D{ni} O((m + logn ]nz] (detect)
O((M 4+ logn \n* log M)
(largest)

= Flock: Use the higher-order Voronoi diagram
= Leadership: Check the leader condition additionally

" ...
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An Extension of Flock Patterns
(Gudmundsson et al. GIS'06, Benkert et al. SAC'07)
= A new definition considers multiple time steps, whereas
the previous definition only one time step

s Flock: A flock in a time interval I, where the duration of /
IS at least k, consists of at least m entities such that for
every point in time within /, there is a disk of radius r that
contains all the m entities

= €.7.,

A flock through 3 time steps

18



Computing Flock Patterns

= Approximate flocks

= Convert overlapping segments of length kto pointsin a
2k-dimensional space

= Find 2k-d pipes that contain at least m points

a cylindrical region and
the mtervals from the




Convoy: An Extension of Flock Pattern
(Jeung et al. ICDE'08 & VLDB'08)

0;

(a) (b)

>

Figure 1: Lossy-flock Problem

Figure 4: An Example of a Convoy

= Flock pattern has rigid definition with a circle
« Convoy use density-based clustering at each timestamp
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Efficient Discovery of Convoys

= Base-line algorithm:
= Calculate density-based clusters for each timestamp
= Overlap clusters for every k consecutive timestamps
= Speedup algorithm using trajectory simplification
= Trajectory simplification

Figure 6: Trajectory Simplification
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A Filter-and-Refine Framework for
Convoy Mining

= Filter-and-refine framework
« Filter: partition time into A-size time slot; a trajectory is
transformed into a set of segments; density-based
clustering on segments.
= Refine: Look into every A-size time slot, refine the
clusters based on points.

Figure 9: Measure of w(o,, o;) and Time Partitioning
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An Extension of Leadership Patterns

(Andersson et al. GeoInformatica 07)

= Leadership: if there is an entity that is a leader of at least
m entities for at least k time units

= An entity e is said to be a leader at time [t,, t] for time-
points ¢, L, if and only if ejdoes not follow anyone at
time [t,, {,], and g; is followed by sufficiently many
entities at time [t,, ]
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Reporting Leadership Patterns

= Algorithm: Build and use the follow-arrays
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00000080 00000080 00000020 00000080
IntervalsNotFwg(t): [e,[O[1[2[0[1]2[3]0] [e;[o]0[0J0ot]o]0] [e,Jo[oJo[o]o[o]o]0] [e[OT1[2[3[4]5]6]T]

IntevalsFweie' 1) [e[0[1[2[3]4]0[0[0] [e, [0[0[0]0[0[0[0]0] [e [0]o]o[o[o]alofo] [eJofofo]t]o[oo]t

e;|0[T[2]3[0]0]0]0] [es|O[0]O[0[0]0[0]0] [e.|Of0|O[T|0]0[0]0] [e.]|O[0]0[0|O[0|1]2
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y,

IntervalsFwdyf1):  [e,[0[1[2[3]#]0]0]0] [e;[0[0[0]0[0[0[0[0] [e.[0]0[0[T[0]0]0]0] [eJof0l0[1[2]3]4]5]
im=1)

nunFws(t): leJo[2]2]2]1]0]oj0] [e[olo]olo]olo]olo] |eofolo]io]olo]o] |e]olofofi]1]1]2]3]

e.g., Store nonnegative integers specifying for how many
past consecutive unit-time-intervals g, is following ¢; (e; # e)
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Swarms: A Relaxed but Real,
Relative Movement Pattern

Flock and convoy all require k
consecutive time stamps (still very
rigid definition)

Moving objects may not be close to
each other for consecutive time
stamps (need to relax time

constraint)
Y A
~02
/ ._/ . _{/}_-\"’_rol
a £ t3 T4 fh
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Discovery of Swarm Patterns

= A system that mines moving object patterns: Z. Li, et al.,
“MoveMine: Mining Moving Object Databases",
SIGMOD’10 (system demo)

= Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining
Relaxed Temporal Moving Object Clusters”, in submission

S

Swarm
discovers more
patterns —

— Convoy discovers

only restricted

A~

patterns




Trajectory Pattern Mining
(Giannotti et al. KDD 07)

= A trajectory pattern should describe the movements of
objects both in space and in time

Temporal information

At = 5 minutes ’/\

At = 35 minutes

>

Spatial information
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Trajectory (T-) Patterns: Definition

= A Trajectory Pattern ( T-pattern) is a couple (s,a):
= S =<(XpV0),--» (X Vi)> IS @ sSequence of k+1 locations
= 0 =<0d,..., Q> are the transition times (annotations)
also written as:

a; a, ay
(Xo:Yo) = (Xp,Y1) — «.ne. — (X Vi)

= A T-pattern T, occurs in a trajectory if the trajectory
contains a subsequence S such that:

« Each (x,y) in T, matches a point (x;,y;) in S, and
= the transition times in Tp are similar to those in S
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T-Pattern: approximate occurrence

Two points match if one falls within a spatial
neighborhood N() of the other

Two transition times match if their temporal

. ‘<
difference is < T A
e input
T trajectory
Example: T
oL, N(X1,Y1)l
(20, y0) — (21,91

<1
Y _
@HN(XG,YU)



Characteristics of Trajectory-Patterns

= Routes between two consecutive regions are not relevant

These two movements are not discriminated

= Absolute times are not relevant

hour

These two movements are not discriminated

hourat5p
:B
1hourat9am
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Finding regions
A usage-based heuristic

(a) input trajectories (b) density distribution (¢) dense cells and extracted Rol
1. Impose a regular grid over space

2. Find dense cells (i.e., touched by many trajs.)

3. Coalesce cells into rectangles of bounded size



Sample Trajectory-Patterns

* , Data ?burce Truc s in Athens — 273 trajectories)

/\, o t1in [ 400, 513 ]

t2in[41,61]

A->B->B and
A->B -> B”

t1

t2
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Spatiotemporal Periodic Pattern
(Mamoulis et al. KDD 04)

= In many applications, objects follow the same routes
(approximately) over regular time intervals

= e.g., Bob wakes up at the same time and then follows,
more or less, the same route to his work everyday
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Y. . 2 : :
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Period and Periodic Pattern

= Let Sbe a sequence of n spatial locations, {/,, /., ..., |4},
representing the movement of an object over a long

history
= Let T << nbe an integer called period, and T is given

= A periodic pattern P is defined by a sequence r,r;...ry, of

length T that appears in S by more than min_sup times

= Forevery r;in P, r;="or l.r;is inside r,
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Periodic Patterns of Moving objects

Periodic behavior is the intrinsic behavior for most moving objects
= Yearly migration of birds
« Fly to south for winter, fly back to north for summer
= People’s daily routines
= Go to office at 9:00am, back home around 6:00pm
Detecting periodic behavior is useful for:
= Summarizing over long historical movement

= People’s behavior could be summarized as some daily
behavior and weekly behavior

= Predicting future movement

« E.Q., predict the location at the future time (next day, next
week, or next year)

= Help detect abnormal events

= A bird does not follow its usual migration path [J a signal of
environment change
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Challenges of Periodic Pattern Mining

interleaved periods

Raw data of David’s movement Hidden periodic behaviors

; ® Periodic Behavior #1 -
2009-02-05 07:01 (601, 254) (Peflﬂd day; Time Sp“ifw
ey . el e s
2009-02-05 10:58 (810, 55)
2009-02-05 14:29 (820, 100)

2009-06—12 09:56 (116, 98)
2009-06—12 11:26 (101, 65)
2009-06—1220:08 (20, 97)

2009-06-12 22:19 (15, 100)

14:00-16:00 T ue‘s- qnd"lhufs 11 “t VIEME}:'HI

multiple periods different locations
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A Motivating Example: Trajectories of Bees

Bee and Flower:
8 hours stays in the nest
16 hours fly nearby
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FFT Transformation Does Not Work

Transform (x,y) into complex plane (two ways to transform)

FFT should have strongest power at 42.7 (T = 24, NFFT/T = 1024/24 = 42.7)
Failed!




Observation/Reference Spot: The Nest

in the nest —.

not in .
the nest

Period is more obvious in this binary
sequence!
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Algorithm General Framework

= Detecting periods: Use observation spots to find multiple
interleaved periods

= Observation spots are detected using density-based
method

= Periods are detected for each obs. spot using Fourier
Transform and auto-correlation

= Summarizing periodic behaviors: via clustering

= Give the statistical explanation of the behavior
=« E.g., “David has 80% probability to be at the office.”

41



Example: Finding Observation Spots

150
150

e g 8 -
100f ——

100}

o

50

C g

50 150

Density

Observation spots
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Clustering: Distance-Based vs. Shape-Based

Distance-based clustering: Find a group of objects moving together
= For whole time span

= high-dimensional clustering

= probabilistic clustering
= For partial continuous time span

= density-based clustering

= moving cluster, flock, convoy (borderline case between
clustering and patterns)

= For partial discrete time span
= swarm (borderline case between clustering and patterns)
Shape-based clustering: Find similar shape trajectories
= Variants of shape: translation, rotation, scaling, and transformation
= Sub-trajectory clustering

44



High-Dimensional Clustering & Distance Measures

= [reat each timestamp as one dimension

= Many high-dimensional clustering methods can be applied
to cluster moving objects

= Most popular high-dimensional distance measure
» Euclidean distance
= Dynamic Time Warping
= Longest Common Subsequence
» Edit Distance with Real Penalty
« Edit Distance on Real Sequence

45



High-Dimensional Distance Measures

Distance Measure Local Complexity
Time
Shifting
(] O(n)

Euclidean

DTW (Yi et al., ICDE’98) O O(n2)

LCSS (Vlachos et al., KDD’03) O O O(n?)

ERP (Chen et al., VLDB’04) [] (] O(n2)

EDR (Chen et al., SIGMOD’05) 0 n O(n2)
(consider

gap)
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Probabilistic Trajectory Clustering
(Gaffney et al., KDD'00; Chudova et al., KDD'03)

Basic assumption: Data produced in the following generative manner

= An individual is drawn randomly from the population of interest

= The individual has been assigned to a cluster & with probability w,, Zlewzc =1,

these are the prior weights on the K clusters

= Given that an individual belongs to a cluster k., there is a density function
{¥; | 84) which generates an observed data item y;for the individual j

The probability density function of observed trajectories is a mixture density

K
P(yjlx;,0) = ka(yj | xj, &) wi
k

= f(y;] X, 6,) is the density component
= W, is the weight, and 8, is the set of parameters for the k-th component

8, and w, can be estimated from the trajectory data using the Expectation-
Maximization (EM) algorithm
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Clustering Results For Hurricanes

(Camargo et al. 06)
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Density-Based Trajectory Clustering

(M. Nanni & D. Pedreschi, JIIS'06)

= Define the distance between whole trajectories

= A trajectory is represented as a sequence of location
and timestamp

= The distance between trajectories is the average
distance between objects for every timestamp

= Use the OPTICS algorithm for trajectories

Reachability Plot

Fanchaity pd

Four clusters
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Temporal Focusing: TF-OPTICS

(M. Nanni & D. Pedreschi, JIIS'06)

In a real environment, not all time intervals have the same importance
= e.g., in rush hours, many people move from home to work or vice versa

TF-OPTICS aims at searching the most meaningful time intervals, which
allows us to isolate the clusters of higher quality

Method:
= Define the quality of a clustering
= Take account of both high-density clusters and low-density noise
= Can be computed directly from the reachability plot
= Find the time interval that maximizes the quality
. Choose an initial random time interval

. Calculate the quality of neighborhood intervals generated by increasing or
decreasing the starting or ending times

. Repeat Step 2 as long as the quality increases
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Trajectory Clustering: A Partition-and-
Group Fl‘a mEWOI‘k (Lee et al., SIGMOD’'07)

= Existing algorithms group trajectories as a whole 1 They might not be
able to find similar portions of trajectories

= €.¢g., common behavior cannot be discovered since TR;~TR; move
to totally different directions

TR, Ha

TR,
—__ A common sub-trajectory
TR;

TR,
= Partition-and-group: discovers common sub-trajectories

= Usage: Discover regions of special interest

= Hurricane Landfall Forecasts: Discovery of common behaviors of
hurricanes near the coastline or at sea (i.e., before landing)

s Effects of Roads and Traffic on Animal Movements: Discover

common behaviors of animals near the road
52



Partition-and-Group: Overall Procedure

= [wo phases: partitioning and grouping

TR, TR

TR,

(1) Partition A set of trajectories

g\

1 : :
A representative trajectory

m‘\&\
roup

<\ A cluster
A set of line segments u

Note: A representative trajectory is a common sub-trajectory

TR,
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Grouping Phase (1/2)

= Find the clusters of trajectory partitions using density-
based clustering (i.e., DBSCAN)

= A density-connect component forms a cluster, e.g., {
Ly Ly Lg Ly L, Ly}
MinLns = 3

L, L—L—L—L—IL,

54



Grouping Phase (2/2)

= Describe the overall movement of the trajectory partitions
that belong to the cluster
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Example: Trajectory Clustering Results

3 Tm]l-.1nr| Cluster - [hurricanc1 250 _ ]
[ Pl Et Vew Window Thsber Expedient I-hh
DEed * R8T

# o Trmponieieet = BP0 Rt 1 chaglensal trdchonies = 71 8 (%)

570 Hurricanes (1950~2004)

Seven clusters dlscovered from

DFd * TR ST
oo g = 32 ok o choalerenitrapeatones = B1 3 (%)

Red line: a representative trajectory
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Location Prediction for Moving Objects

= Predicting future location
« Based on its own history of one moving object

« Linear (not practical) vs. non-linear motion (more
practical)

= Vector based (predict near time, e.g., next minute)
vs. pattern based (predict distant time, e.g., next
month/year)

= Based on all moving objects’ trajectories
= based on frequent patterns
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Recursive Motion Function
(Tao et al., SIGMOD’'04)

= Non-linear model, near time prediction, vector-based method
= Linear model is not practical in prediction, so better to use non-linear

model
= Recursive motion function
o(t) = Cro(t-1) + Cyo(1=-2) + ... + Cro(t-f)
C. is a constant matrix expressing several
complex movement types, including
polynomials, ellipse, sinusoids, etc.
= Use basic motion matrices to model
unknown motion matrices

i

)y

\ ' predicted positions
at time 2

o(1) predicted pr).ﬁ‘i! ions

o(0) at time [ ;

(a) Polynomial  (b) Sinusoid  (c) Circle (d) Ellipse ' "(a) Spiral

Figure 6.1: Movements with known motion matrices

—

Figure 1.1: Failure of linear prediction

(b) Peach (c) Parabola (d) Swirl

Figure 6.3: Movements with unknown motion matrices
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Prediction Using Frequent Trajectory
Patterns (monreale et al., kpp'09)

= Use frequent T-patterns of other moving objects

= |f many moving objects follow a pattern. it is likely that a movina
object will also follow this pattern

= Method
= Mine T-Patterns
= Construct T-Pattern Tree
= Predict using T-pattern tree

Root
= Prior
Local evaluation
Models

Split the
Data
I
1n

Local (1,C,35) ( 4,A,31) (11, B, 28) ( 13,F,37 )
'1;*“ Models
ot Selection
[15,20] [10,12] [4,20] [70,90] \[9,15] [8,70] [2,51]
Truncate Buildin —
4 (2, B, 20)(3, D, 35)( 5, A, 26) ( 6, C, 21) (9, B, 31)( 12, E, 38)( 14, D, 37)

[10,56]

[10,12] [15,20]
dictions

(7, D, 21)(8, B, 10)( 10, E, 21)

Figure 2: T-pattern Tree construction 60
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Trajectory Classification

= [ask: Predict the class labels of moving objects based on
their trajectories and other features

= [wo approaches
= Machine learning technigques

« Studied mostly in pattern recognition, bioengineering,
and video surveillance

= The hidden Markov model (HMM)

= Trajectory-based classification (TraClass): Trajectory
classification using hierarchical region-based and
trajectory-based clustering
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Vehicle Trajectory Classification

(Fraile and Maybank 98)

= The measurement sequence is divided into overlapping

segments

= In each segment, the trajectory of the car is approximated
by a smooth function and then assigned to one of four
categories: ahead, left, right, or stop

= The list of segments is reduced to a string of symbols
drawn from the set {a, /, r, S}

= The string of symbols is classified using the hidden
Markov model (HMM)
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Motion Trajectory Classification

(Bashir et al. 07)

= Motion trajectories

= Tracking results from video trackers, sign language data
measurements gathered from wired glove interfaces, and so on

= Application scenarios
= Sport video (e.g., soccer video) analysis
= Player movements — A strategy
= Sign and gesture recognition

« Hand movements — A particular word
= The HMM-Based Algorithm
1. Trajectories are segmented at points of change in curvature

2. Sub-trajectories are represented by their Principal Component Analysis
(PCA) coefficients

3. The PCA coefficients are represented using a GMM for each class

4. An HMM is built for each class, where the state of the HMM is a sub-
trajectory and is modeled by a mixture of Gaussians
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TraClass: Trajectory Classification
Based on Clustering

= Motivation

= Discriminative features are likely to appear at parts of
trajectories, not at whole trajectories

= Discriminative features appear not only as common
movement patterns, but also as regions

s Solution

« Extract features in a top-down fashion, first by region-
based clustering and then by trajectory-based
clustering
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Intuition and Working Example

Container Port Refinery

Fishery

— — —+» Container Ships - » Tankers ——— Fishing Boats

« Parts of trajectories near the container port and near the
refinery enable us to distinguish between container ships
and tankers even if they share common long paths

= Those in the fishery enable us to recognize fishing boats
even if they have no common path there
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Class-Conscious Trajectory Partitioning

1. Trajectories are partitioned based on their shapes as in
the partition-and-group framework

2. Trajectory partitions are further partitioned by the class
labels

= The real interest here is to guarantee that trajectory
partitions do not span the class boundaries

Non-discriminative Discriminative
N N

________________ - —— C(Class A
"""" > --- Class B

~~~~~~~~~~~~~ —w

[
—Pp

Additional partitioning points
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Region-Based Clustering

= Objective: Discover regions that have trajectories mostly
of one class regardless of their movement patterns

(3)
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Trajectory-Based Clustering

= Objective: Discover sub-trajectories that indicate common
movement patterns of each class

= Algorithm: Extend the partition-and-group framework for
classification purposes so that the class labels are
incorporated into trajectory clustering

» If an e-neighborhood contains trajectory partitions
mostly of the same class, it is used for clustering;
otherwise, it is discarded immediately
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Overall Procedure of TraClass

1. Partition trajectories

2. Perform region-based clustering

3. Perform trajectory-based clustering

4. Select discriminative trajectory-based clusters
5. Convert each trajectory into a feature vector

= Each feature is either a region-based cluster or a
trajectory-based cluster

= The -th entry of a feature vector is the frequency that
the i-th feature occurs in the trajectory

6. Feed feature vectors to the SVM
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Example: Extracted Features

Cattle
Features:
10 Region-Based Clusters

37 Trajectory-Based Clusters

Data (THree Classes)

Accuracy = 83.3%
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Mining Moving Object Data

Introduction

Movement Pattern Mining
Periodic Pattern Mining
Clustering

Prediction

Classification

)
Outlier Detection .
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Trajectory Outlier Detection

= Task: Detect the trajectory outliers that are grossly different
from or inconsistent with the remaining set of trajectories

= Methods and philosophy:

1. Whole trajectory outlier detection
= A unsupervised method

= A supervised method based on classification
2. Integration with multi-dimensional information

3. Partial trajectory outlier detection

= A Partition-and-Detect framework
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Outlier Detection: A Distance-Based
Approach (norr etal. vioeoo)

= Define the distance between two whole trajectories
= A whole trajectory IS represented by

P start
P end

P heading

P velocity

Pstare = (Xstart, ystart)
Pena = (Xend, Vend )
where

P heading = (avg heading , MAXheading , minheading)

P velocity = (avgvelocity, maXvelocity, minvelocity)

= The distance between two whole trajectories is defined as

D(Pi, P2) =

[ Dyiare(P1, P2)
Dena( P, P2)
Dineading (P1, P2)

| Dhvelociry(P1, P2) |

. [Wstart Wend W heading erlocity]

= Apply a distance-based approach to detection of trajectory outliers

= Anobject Oin a dataset Tis a DB(p, D)-outlier if at least fraction p
of the objects in T lies greater than distance D from O
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Sample Trajectory Outliers

= Detect outliers from person trajectories in a room

FEERHELL

B E'ﬁ*"ﬁ'"ﬂ-
R A

DDDDDD

‘outliersonly

1E

DDDDD
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USE Of Neu I‘al NEtWO I‘kS (Owens and Hunter 00)

= A whole trajectory is encoded to a feature vector. F = [ x,
Y, X, V), (ax), s(dy), (| Fx1), (IFN) ]
= S() indicates a time smoothed average of the quantity
s X = X— X
s BX= X— 22X + X,
= A self-organizing feature map (SOFM) is trained using the

feature vectors of training trajectories, and a new

trajectory is classified into novel (i.e., suspicious) or not
novel

= Supervised learning
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An Application: Video Surveillance

= [raining dataset: 206 normal trajectories
= [lest dataset: 23 unusual and 16 normal trajectories
= Classification accuracy: 92%

= ;fi‘d! &w kS

An example of a normal An unusual trajectory,
trajectory The unusual points are
shown in black
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Anomaly Detection (Li et al. ISI'06, SSTD'07)

= Automated alerts of
abnormal moving
objects

= Current US Navy
model: manual
inspection
= Started in the 1980s
= 160,000 ships
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Conditional Anomalies and Motif
Representations

Raw analysis of collected data
does not fully convey “anomaly”
information

More effective analysis relies on| ~
higher semantic features

a sequence of motifs
Examples:

= A speed boat moving quickly landmark
In open water /

= A fishing boat moving slowly
into the docks

= A yacht circling slowly around
landmark during night hours

Motif representation

with motif attributes
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Motif-Oriented Feature Space

= Each motif expression has attributes (e.g., speed, location, size, time)
= Attributes express how a motif was expressed
= A right-turn at 30mph near landmark Y at 5:30pm

= A straight-line at 120mph () in location X at 2:01am
= Motif-Oriented Feature Space

= Naive feature space
1. Map each distinct motif-expression to a feature
2. Trajectories become feature vectors in the new space

= Let there be A attributes attached to every moitif, each trajectory is
a set of motif-attribute tuples

{(m, v, vy ..., Vy), ..., (mj, Vi, Vo «ony Va)}

= Example:
= Object 1: {(right-turn, 53mph, 3:43pm)} — (1, 0)
= Object 2: {(right-turn, 50mph, 3:47pm)} — (0, 1)
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Motif Feature Extraction

= Intuition: Should have features that describe general
high-level concepts

= "Early Morning” instead of 2:03am, 2:04am, ...
= 'Near Location X" instead of "50m west of Location X"
= Solution: Hierarchical micro-clustering

= For each motif attribute, cluster values to form higher
level concepts

= Hierarchy allows flexibility in describing objects

= €.g., "afternoon” vs. “early afternoon” and “late
afternoon”
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Trajectory Outlier Detection: A Partition-
and-Detect Framework (tee et al. 0s)

= Existing algorithms compare trajectories as a whole =
They might not be able to detect outlying portions of
trajectories

= €.0., TR5is not detected as an outlier since its overall
behavior is similar to those of neighboring trajectories

TR
TR

TR!
TR ,TFZ\

An outlying sub-trajectory

= The partition-and-detect framework is proposed to
detect outlying sub-trajectories
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Experiments: Sample Detection Results

il Trajectory Outlier - [hurricane1990_2006]

Fle Edt Wew Outier Experiment Window Help
D@l =8 &7

# of Trajectories = 221 (7043)

# of Outliers =13 (157)

13 outliers detected from the hu
data

e

= Ay

DEH TR ST

[ o Tragocnoes = 33 (15328
8 i o ligrs m 3 (2000




Summary: Moving Object Mining

= Pattern Mining

= Trajectory patterns, flock and leadership patterns, periodic
patterns,

= Clustering

= Probabilistic method, density-based method, partition-and-group
framework

= Prediction

= linear/non-linear model, vector-based method, pattern-based
method

» Classification

= Machine learning-based method, HMM-based method, TraClass
using collaborative clustering

s Quitlier Detection

= Unsupervised method, supervised method, partition-and-detect
framework
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