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Data mining and the web
Web Mining: the discovery and analysis of useful 

information from the World Wide Web. 

� web content mining

� aims at constructing higher-level models of organization 
of semi-structured data contained in web sites; 

� web structure mining (also part of content mining)

� aims at constructing models of web site structure in 
terms of page interconnections.

� web usage mining (or web log mining)

� aims at discovering usage patterns from web logs of 
browsers, web servers and proxy servers; 



Web mining taxonomy



Web usage mining
� Focus on the analysis and discovery of usage 

patterns and models on the basis of historical 

data: the web log files which record previous 

access to web objects. 

� Web log files provide a large source of data for 

DM, as web servers and proxy servers store order 
of millions logs every day.

� Various application domains:

� web site redesign and restructuring, 

� self-adapting web sites, 

� recommendation systems in e-commerce
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Web Mining: 

Preprocessing



Client/Server Interaction



Web data sources
� Client

� Registration data

� Browser

� Agents (e.g., applets, jscript, ecc.)

� Web Server

� HTTP Clickstream 

� Content/Application Server (e.g., Vignette, Broadvision)

� Packet Sniffer (e.g., Accrue)

� Other (database log, file system log, ecc.)

� ISP o Proxy

� HTTP Clickstream 

� Packet Sniffer



HTTP Clickstream: ECLF
� Extended Common Log Format (a row per HTTP request)

213.213.31.41 - - [15/Apr/2000:04:00:04 +0200] "GET images/h/h_home.gif

HTTP/1.1" 200 1267 "http://www.di.unipi.it/" "MSIE 4.01; Windows 98“

•Host: 213.213.31.41        (or reverse address lookup )

•Ident e Authuser: - - (IDs for IDENTD and HTTP/SSL)

•Time: [15/Apr/2000:04:00:04 +0200]  (end-of-answer time)

•HTTP Request: "GET images/h/h_home.gif HTTP/1.1"

•Status: 200        (=OK, 3xx=redirection, 4xx=client error, etc.)

•Bytes: 1267       (number of transmitted to the Client)

•Referrer: "http://www.di.unipi.it/" 

•User agent: "MSIE 4.01; Windows 98"



HTTP Clickstream
Sometimes other data are available:

� Server Computer ID, Time-to-Serve, Content-Type, 

Expires, Last-Modified, No-cache, ...

� Cookies

� Mechanism to handle the status of a session/to identify 

users

� Cookie = string exchanged between client and server

� Persistent / active only for actual session

� Stored on the client side

� Can be refused/cancelled by user



Terminology
� Page file: file accessed by a single HTTP request

� Page view: set of page files which compose a single 
page displayed in a browser. 

� Its page files can be retrieved from different servers

� (local) User session: set of page views retrieved by a user 
from the Web Server to achieve some goal. 

� Available at the Web Server level

� Partially hidden by Browser and Proxy caching

� Global user session: set of page views retrieved by a user 
from the whole Web to achieve some goal. 

� Available only at the Client level

� Partially available at the Proxy/ISP level because of Browser caching



Drinking from the Fire hose

� HTTP Clickstream is a “poor” data source

� Log preprocessing needed before data mining

� Preprocessing issues:

1. Request Preprocessing

2. User Identification

3. Page Identification

4. Page Content Identification

5. Computing the Dwell time

6. Session Identification

7. Path Completion



1. Request Preprocessing

� URL are not unique IDs for web resources

� E.g.: http://www.DI.unipi.IT = http://www.di.unipi.it, etc.

� Field extraction

� Host, Path, Filename, File Extension, Query String

• Request selection
• Filter out visits of robots

• Several Heuristics: Known names/substrings, repeated accesses 
to the same page, too quick clickstream, data mining approaches,
etc.

• Analisys-dependent selection

• E.g.: Only GET requests, or successful (code 200) requests, etc.



2. User Identification
� IP (+  User Agent)

� Always possible, but not reliable (IP recycling by ISP + Proxy 
masking)

� Cookies
� Can be refused by users, but are (quite) reliable and can be shared 

among different sites. 

� Embedded SessionID (volatile cookies)
� For a single visit: http://www.di.unipi.it/?session=123456

� Client-side tracking (modified browser)

� Reliable, but invasive (privacy)

� Authentication

� Maximal reliability, but invasive (privacy)

� Others:

� Path analysis, ID Ethernet, ID CPU



3. Pageview Identification
Associates each request with its corresponding page view.

Referrer-based

� Page view = A + all requests having referrer A, till next 

request for A

� Problems: multiframe pages (have several referrers); client and proxy 

caching can mask “next request for A”; external referrers

� Analysis of HTML content

� Page View = A + all page files embedded in A (e.g.: <img>)

� Problems: dynamic pages

� Application/content server

� Access log at the application/content server

� Very general but expensive



4. Page Content Identification
Associates each page view with a classification of its content

� E.g.: events in e-commerce = view, click-through, buy, bid, shoopping 

cart change

� Explicit identification

� Made by web administrators

� Expensive, not general

� Analysis of HTML content

� Automatic natural language analysis techniques

� Limits with dynamic pages,  input pages

� Application/content server log

� Content log at the application/content server level

� Very general but expensive



5. Computing Dwell time

� Dwel time: time between the end of a page view loading 

and the beginning of next request from the same user

Html Java

GIF

JPEG Html

• Computing the PageView loading time:
– Approximation based on PageView size

– Experimental values

– Special cases: streamining video

• Dwell time=0  � loading aborted � unsatified user



6. Session Identification
� A set of accesses from a user can be associated with 

different goals

� User session = set of page views/files requested by 
a single user to the Web Server for a specific 
“goal”. 

� Objective: given a sequence of page files/views 

<p1, …, pn>

requested by a user, discover subsequences

<p1, …, pn1>   <pn1+1, …, pn2>  ...   <pn(k-1)+1, …, pnk >

corresponding to different “goals”.



6. Session Identification
Heuristics

� Time-oriented 
� Subsequences must have limited time extensions:

� Time between p1 and pn1 must be ≤ t’ (typical value: 30’)

� Time between pi and pi+1 must be ≤t”

� Navigational vs. Content pages

� Navigation-oriented 
� Linkage: “jump” to a non-reachable page � end of session

� E.g.: Links=A�B, A�C, B�D, C�E

The <A B D C E B> sequence is divided in  <A B D C>  and  <E 
B>

� Topology of the site is requested

� Maximal Forward Reference: backtrack � end of session

� E.g.: <A B D C B> yields: <A B D>,  <A C>  and  <A B>

A

B C

D E



7. Path Completion
� Objective: deducing requests not logged because were 

satisfied by caches between user and web server. 

• Missing path: from E to C

– Shorthest solution: E � D � B � C

– It is not unique!



Web Mining

Data mining tasks



Data Mining

� General objective: Search for common 

patterns in a data set.

� NOT a replacement for:

� Session Analysis

� Static Aggregation and Statistics (Reports)

� OLAP



Common Data Mining Tasks

� Frequent Itemsets

� Association Rules

� Clustering

� Classification

� Sequential Patterns



Frequent Itemsets
� Find groups of items that appear together in 

a “transaction” with some frequency. 

� Similar to statistical correlation. 

� Standard measure used is “support”, which 

gives the percentage of transactions that an 

itemset appears in.

� For example, “Items A and B appear 

together in s% of the transactions.”



Frequent Itemset 
Example

� The “Home Page” and “Shopping Cart Page” 

are accessed together in 20% of the sessions.

� The “Donkey Kong Video Game” and “Stainless 

Steel Flatware Set” product pages are accessed 

together in 1.2% of the sessions.

NB: transactions are defined as sets of visited 

web pages (e.g.: user sessions).



Association Rules
� Similar to Frequent itemsets, except a 

directionality is introduced to each rule. 

� Instead of just “A and B appear together 

frequently (with support s%)”, we get: 

“When A appears, B also appears x% of the time”

“When B appears, A also appears y% of the time”

� The x and y values are referred to as 

Confidence.



Association Rules 
Example

� When the “Shopping Cart Page” is 

accessed in a session, the “Home Page” is 

also accessed 100% of the time.

� When the “Shipping conditions” page is 

accessed in a session, a purchase is 

performed 75% of the time.



Clustering

� Form groups of similar items.

� Often difficult to define similarity.

� Two types of clustering

� Number of groups are predetermined.

� Number of groups are automatically 

determined by the algorithm.



Clustering
Page Clustering: Example

Usage-based frequent itemsets are clustered:

� “Donkey Kong Video Game”, “Pokemon Video Game”, 

and “Video Game Caddy” product pages are related.

Graph partitioning of web site structure:

� “DM homepage”, “DM bibliography”, “DM teaching” 

link only (and are linked only by) each other.

Based on content dissimilarity between pages:

� “Donkey Kong Video Game”, “Pocket Donkey Kong”, and 

“Donkey Kong 2” (on different sites) have similar contents.



Clustering
User session Clustering: Example

User Transaction Clustering:

� Transactions=sets of URLs (pages in a 

session) as binary vectors

� K-means on transactions

Association rule hyper-graph partitioning:

� Arcs A�B represent associations between 

URLs A and B

� Clustering by partitioning the graph



Classification
� Discover rules that will predict what group 

an item belongs to.

� Similar to clustering, with the concept that 

every item belongs to a group or class.

� Usually requires “training”, where a 

classifier is “shown” examples of different 

groups in order to learn how to classify new 

items as they arrive.



Classification 
Example

Classify pages on content

� “Donkey Kong Video Game”, “Pokemon Video 
Game”, and “Video Game Caddy” product 
pages contain words “game”, “console”, … => 
they are all part of the Video Games product 
group.

Classify sessions/users

� The user who visits both the "Delivery options" 
and "How to pay" pages, falls in the "Probable 
customers" category.



Sequential Patterns

� Sequential patterns add an extra dimension 

to frequent itemsets and association rules -

time.

� Items can appear before, after, or at the same 

time as each other.



Sequential Patterns 
Example

Time-forward associations:
• 50% of users who visited the “Video Game Caddy” page, later

visited also the “Donkey Kong Video Game” page. This occurs 
in 1% of the sessions.

Time-backward associations:
• 30% of clients who visited /products/software/ had done a 

search in Yahoo using the keyword “software” before their 
visit.

Sequences:
• In 2% of sessions the user visited "Institute homepage" then

"Contact info" then "Tom's personal page".



Data Mining: Pro and cons

� Advantages:

� Discovery complex patterns that were not obvious 

through other tools.

� Reduce vast amounts of data to a small number of 

rules or patterns.

� Disadvantages:

� Requires the most resources.

� No “out of box” solutions.

� Discovered patterns are often obvious and already 

known.



Filtering interesting patterns

Means: 

� web structure information

Hypothesis:

� Domain knowledge can be derived from 
content and structure of a site, to define 
“expected patterns”

“Subjective interestingness”:

� Measures deviation from expected patterns



Filtering interesting patterns 
Expected patterns: Example

Site structure:

home.html

B.html

A.html

C.html

D.html

Rule B.html ���� A.html is expected (thus not interesting).

Rule D.html ���� C.html is unexpected (thus interesting).



Applications

1. Web mining for Web caching



Web caching

� Web caching is the temporary storage of web 

objects for later retrieval

� It can be performed at:

� client level

� proxy level

� server level

� Caching may

� reduce bandwidth

� reduce server load

� reduce latency

� improve reliability



Web caching: basic schema

web
log

Web/proxy 
server

Cache
(e.g.: LRU)

page
request

answer

log



Objectives

� Intelligent web caching:

� extend the (LRU) policy of web/proxy servers by 

making it sensible to web access models extracted 

from history log data using data mining techniques

� Design of an intelligent web caching system

� model extraction 

� definition of a cache replacement policy that exploit 

extracted data mining models



Data mining techniques adopted

� Association rules 

� we extract from the web logs rules of the form 

A => B, where A and B are web documents

� rule means that when the web document A is 

requested, then B is also likely to be requested within 

the same user session. 

� in the cache replacement algorithm: if A is requested, 

and therefore kept in the cache if present according to 

the LRU policy, then also B is treated analogously.



Data mining techniques adopted

� Classification

� we develop a decision tree:

A model capable to predict, given a request of a 
web document A, the time of the next future 
request of A given other properties of A itself. 

� the prediction is based on the historical data 
contained in the web logs.

� the prediction is used to assign a weight to A 
in the cache.



web
log

log
DW

DM
models

Web/proxy 
server

Intelligent
Cache

page
request

Data
preparation

Data mining
task

answer

Intelligent web caching: Architecture

On-line sideOff-line side

log

Update



Applications

2. Web Mining for e-commerce: 

Personalization



Three aspects of a Web site affect its utility in 

providing the intended service to its users: 

� Content

� Layout of individual pages 

� Structure of the entire Web site itself

Web Personalization



Personalization/Recommendation
• The Problem

– dynamically serve customized content (pages, products,
recommendations, etc.) to users based on their profiles,
preferences, or expected interests

• Personalization v. Customization

– Customization: user controls and customizes the site or the 
product based on his/her preferences
– usually manual, but sometimes semi-automatic based on a given user 

profile

– Personalization: done automatically based on the user’s 
actions, the user’s profile, and (possibly) the profiles of
others with “similar” profiles







(Traditional) Personalization Methods

� Currently, the most used technique for web 
personalization is collaborative filtering.

E.g.: k-Nearest-Neighbor approach:

� Each visitor is mapped to the k most similar past users 
(similar=same ratings to items, same page accesses, 
etc.)

� A set of items is proposed to the visitor, obtained from 
the analysis of her/his neighborhood’s past activity 

� Limitations of this method: 

� not scalable to large number of items (slow on-line 
kNN)

� does not integrate additional site information such as 
content/navigational pages



Web Mining for Personalization
� Web mining approach: dividing the process

1. (slow) offline pattern discovery

2. (fast) online application of discovered patterns 

� It provides the tools to analyze Web log data in a 

user-centric manner such as segmentation, 

profiling, and clickstream discovery. 

� Data mining results  to create decision rules for 

customizing Web site content based on an 

individual user's behavior.



Association-based Personalization
Basic Idea

� Match left-hand side of rules with the active user session 
and recommend items in the rule’s consequent

� Ordering of accessed pages is not taken into account

� Good recommendation accuracy, but the main problem is
coverage

� Tradeoff: Coverage vs. Computational cost:
� high support thresholds lead to low coverage and may eliminate 

important, but infrequent items from consideration

� low support thresholds result in very large model sizes and
computationally expensive pattern discovery phase



Association-based Personalization
The approach of Mobasher et al.

� Avoid offline generation of all association rules; generate 
recommendations directly from itemsets
� discovered frequent itemsets of are stored into an “itemset graph” 

(an extension of lexicographic tree structure of Agrawal, et al 
1999)

� recommendation generation can be done in constant time by 
doing a directed search to a limited depth

� Frequent itemsets are matched against a user's active
session S by performing a search of graph to depth |S|

� A recommendation r is an item at level |S+1| whose
recommendation score is the confidence of rule S ==> r



Sequence-based Personalization
Basic Idea

� Take the ordering of accessed items into account

� Two basic approaches:

� use contiguous sequences (e.g., Web navigational 
patterns)

� use general sequential patterns

� Contiguous sequential patterns are often modelled as
Markov chains:

� Usually applied to prefetching

� In context of recommendations, they can achieve higher
accuracy than other methods, but may be difficult to 
obtain reasonable coverage



Sequence-based Personalization
The approach of Gaul and Schmidt-Thieme

� Recommendations are based on frequent patterns of 

past behaviour

� A recommender is a predictor for a class of events

(access to pages, form submissions, etc.)

� A navigation history is a set, a sequence or a more 

complex structure of events

� A collection of recommenders provide suggestions 

and a combination/selection is proposed to the user



Usage profiles for Personalization
Mobasher, Dai, Luo, Nakagawa

� Clustering to identify transaction clusters. 

� New technique to identify user profiles from transaction clusters

� The general architecture presented has two components:

 (offline) Web usage analysis

 (online) Recommendation



� Effectiveness of a Web site in providing users with 

the content they need in the most optimized manner is 

the key to retaining them.

� Web Usage Miner: a navigation pattern Q.L.
SELECT  t FROM NODE AS x y z

TEMPLATE    x*y*z AS   t

WHERE x.support>=20  AND  (y.support/x.support) >= 0.5

AND (z.support/y.support) >= 0.15

� Conversion rates over different kinds of patterns are used 

to understand the site usage. 

� Suggestions to improve site content/structure

Other Personalization Tasks 
Spiliopoulou et al.: Improving Sites



Other Personalization Tasks 
Perkowitz & Etzioni: Adaptive Web Sites/1 

The IndexFinder consists of three phases:

� Log processing: Establishment of sessions as sets of 
page requests

� Cluster mining: Grouping of co-occuring non-linked 
pages with help of the site graph

� Conceptual clustering:

� The representative concept of each cluster is identified.

� Cluster members not adhering to this concept are removed 
from the cluster.

� Pages adhering to this concept and not appearing in the 
cluster are attached to the cluster.



� For each cluster, the IndexFinder presents to 

the Web designer:

� An index page with links to all pages of a cluster

� The Web designer decides:

� whether the new page should indeed be 

established

� what its label should be

� where it should be located in the site

Other Personalization Tasks 
Perkowitz & Etzioni: Adaptive Web Sites/2 



Usage profiles for Personalization

step by step

(Mobasher, Dai, Luo, Nakagawa)



Preprocessing

1



Preprocessing/1

� Data cleaning

� Requests for .gif, .GIF, .jpg, .JPG, ... (editable list) 
are filtered out

� User identification

� IP+Agent name to distinguish users

� Referrers and site topology: access to a page not 
reachable from visited pages � new user

� Session identification

� Time-oriented: maximum threshold between 
contiguous requests. Default:30 minutes.



Preprocessing/2
� Path completion

� Standard approach, selecting minimal-length paths

� Transaction identification (= sub-parts of sessions)

� 3 Techniques, analogous to session identification:

� Reference lenght: time-out between contiguous 

requests

� Maximal forward reference: backtrack � new 

transaction

� Time window: time-out between first and last requests 



Preprocessing/3
Format:

� Transactions are represented as vectors

� Dimensions: one for each possible page view

� Values: for each page view p, its weight: 

� w(p)∈ [0,1] If p is in the transaction

� 0 Otherwise

� Computing w(p):

� From site structure analysis

� By domain experts 



Profile extraction

2



Computing aggregate profiles

� Transaction clustering

� Standard k-means clustering over the vector 

representation of transactions

� Result: set of clusters TC= {c1, …, cn}

� For each cluster c, extract its corresponding profile:

� compute the mean vector mc of c

� normalise values so that min=0 and max=1

� components  < µ are set to 0 � the page view is 

discarded



Computing aggregate profiles
Example



Recommendation

3



Computing Recommendations

� The active session s of a user is considered

� Sliding window: take only last n page views

� Compute its vector representation, with weights

� Match s with all profiles mc (clusters C) :

� Normalised cosine similarity:

� Compute the recommendation scores, for all p∈C:

� Add k best recommendations to the last page 

requested



Research topics

� All steps of the process can be improved

� Preprocessing: user identification means, better 
session heuristics, etc.

� Mining: new algorithms for web data, ...

� Pattern analysis: more effective filtering strategies, 
qality evalution methodologies, ...

� XML: exploiting DTD semantic information

� Web wharehousing: multi-abstraction level 
organisation of the data on the web (�next slide)

� ...



Generalized Descriptions

More Generalized Descriptions

Layer0

Layer1

Layern

...

Multilayered Web Information Base
Han’s vision

Data Mining
e.g.: document classification

Data Mining
e.g.: Clustering
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