
Preprocessing
Mobility Data

Content of this lesson

● Preprocessing trajectories – Part I
○ trajectory filtering

○ point map matching

○ route reconstruction

○ trajectory compression

Trajectory filtering

● Data points are sometimes affected by errors
● Errors can have huge effects on results

What is the real length of this trip?

● Two families of approaches:
○ Context-based filtering
○ Movement-based filtering

● Single points might contain errors of various kinds

Context-based filtering

● Single points might contain errors of various kinds
● Map-based detection: cars on the water or out of roads are noise

○ Caution: do you trust 100% your map?

noise

noise

noise ?

Context-based filtering

Always inspect
your data !

Movement-based filtering
● No context is used, just the geometry / dynamics of movement

● Speed-based noise filtering approach:
− The first point of the trajectory is set as valid
− Scan all remaining points “p” of the trajectory (time order)

− Compute “v” = average straight-line speed between point “p” and the
previous valid one

− If “v” is huge (e.g. larger than 400 km/h)
=> remove “p” from trajectory (“p” will not be used next to estimate speeds…)

 else
=> set “p” as valid

X X
X

Movement-based filtering
Exercise
● What happens in this situation? (Multiple noisy points)

start

Point map matching

● Points can be aligned to the road network
○ Objective 1: improve accuracy of position
○ Objective 2: remove extreme cases (ref. filtering)
○ Objective 3: translate trajectories to sequences of road IDs

● Idea: project the point to the close location in the network
○ Usually there is a maximum threshold
○ Points farther than the threshold from

any road are removed as noise

Point map matching

● Point projection
○ Requires to compare each point to each

road segment

● Refresher on point-to-segment distance
computation

Point map matching

● In some contexts there can be multiple choices

Point map matching

● Matching points separately can lead to inconsistent results
○ Mainly road-dense areas with position accuracy comparable to road

separation
● Need a trajectory-level matching

○ Linked to route reconstruction

Route reconstruction

● Sometimes the space/time gap between consecutive points is significant

What happens in
the middle?

Route reconstruction

● Typical solutions:
− Free movement => straight line, uniform speed

Route reconstruction

● Typical solutions:
− Constrained movement => shortest path

Route reconstruction

Shortest paths can be replaced by alternative “optimal paths”

● Based on a notion of path cost
● Typical ones: path length, path duration (requires to know typical traversal times of roads)
● Alternative ones: fuel consumption, EV battery consumption, CO2 emissions, mixed costs

Algorithms applied are standard graph path optimization methods:

● Dijkstra's algorithm → efficient, requires that costs are non-negative
● Bellman-Ford algorithm → less efficient, can work with negative weights (but no cycles)

See method parameter
of shortest_path
function of NetworkX

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html#networkx.algorithms.shortest_paths.generic.shortest_path

Refresher: Dijkstra’s minimum cost algorithm

Refresher: Dijkstra’s minimum cost algorithm

Refresher: Dijkstra’s minimum cost algorithm

Trajectory Map Matching

● Assigns points to road segments
● Reconstructs the movement between consecutive points
● Ensures coherence of the overall process

● Two sample approaches:
○ Based on shortest path
○ Based on probabilities

Shortest path-based Map Matching
Used by MappyMatch

● Similar ideas as trajectory simplification
○ Match first and last point
○ Compute shortest path on the network
○ Find farthest point from shortest path
○ If distance > threshold ⇒

■ split into two parts
■ run recursively the process on both

Reference: Zhu, honda & Gonder. A Trajectory Segmentation Map
Matching Approach for Large-Scale, High-Resolution GPS Data. TRB 2017.

https://github.com/NREL/mappymatch/
https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data
https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data

Probability-based Map Matching
Used by pyTrack

● Consider possible point-to-road assignments, with probabilities
● Compute most likely path that visits all points in the correct sequence

Reference: Newson & Krumm. Hidden Markov Map Matching
Through Noise and Sparseness. ACM GIS‘09.

https://pytrack-lib.readthedocs.io/en/latest/index.html
https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf
https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf

INTERVALLO

Who’s Dijkstra

● 1930 - 2002
● Dutch computer scientist, programmer,

software engineer, systems scientist, and
science essayist

● 1972 Turing Award for “fundamental
contributions to developing programming
languages”

INTERVALLO

Dijkstra is famous for…

● Dijkstra’s algorithm, of course
● Contributions to “self-stabilization of

program computation”
○ Won him the “ACM PODC Influential

Paper Award”, later renamed “Dijkstra
Prize”

● Hundreds of papers on computational and
science philosophy issues

INTERVALLO

Dijkstra is famous for…
● His habit of writing everything with paper

& fountain pen
● Hundreds of papers, many unpublished

○ E. W. Dijkstra Archive
● Counting should start

from 0, not 1…

INTERVALLO

Dijkstra the teacher
● Chalk & blackboard, no projectors
● No textbooks
● Improvisation & long pauses
● No references in papers

"For the absence of a bibliography I offer neither
explanation nor apology."

● Long exams
○ Each student was examined in Dijkstra's office or

home, and an exam lasted several hours

Trajectory compression / simplification

● Many algorithms for trajectories are expensive
○ Their complexity depends on the number of points
○ Sometimes trajectories have more points than needed

● Objective of compression / simplification
○ Reduce the number of points…
○ … without affecting the quality of results

● A trajectory is a temporal sequence of time-stamped locations
● Most methods focus on the spatial component

Trajectory data

● Typical cases where points might be removed

 Straight line movement Negligible movement

Trajectory compression / simplification

Compression/simplification methods

Some standard methods for simplifying polygonal curves:

• Ramer–Douglas–Peucker, 1973

• Driemel–HarPeled–Wenk, 2010

• Imai–Iri, 1988

Ramer-Douglas-Peucker

1972 by Urs Ramer and 1973 by David Douglas and Thomas Peucker

The most successful simplification algorithm. Used in GIS, geography, computer vision, pattern
recognition…

Very easy to implement and works well in practice.

p

Input polygonal path P = 〈p1,…,pn〉 and threshold ε

Initially i=1 and j=n

Algorithm DP(P,i,j)
 Find the vertex vf between pi and pj farthest from pipj.
 dist := the distance between vf and pipj.

 if dist > ε then
DP(P, vi , vf)
DP(P, vf , vj)

 else
Output(vivj)

pjpi

Ramer-Douglas-Peucker

Input polygonal path P = 〈p1,…,pn〉 and threshold ε

Initially i=1 and j=n

Algorithm DP(P,i,j)
 Find the vertex vf between pi and pj farthest from pipj.
 dist := the distance between vf and pipj.

 if dist > ε then
DP(P, vi , vf)
DP(P, vf , vj)

 else
Output(vivj)

pjpi

Ramer-Douglas-Peucker

dist

> ε

> ε

Ramer-Douglas-Peucker

> ε

> ε

> ε

> ε

p

q

Ramer-Douglas-Peucker

p

q

Ramer-Douglas-Peucker

Time complexity?

Testing a shortcut between pi and pj takes O(j-i) time.

Worst-case recursion?

Algorithm DP(P,i,j)
 Find the vertex vf farthest from pipj.
 dist := the distance between vf and pipj.

 if dist > ε then
DP(P, vi , vf)
DP(P, vf , vj)

 else
Output(vivj)

DP(P, vi , vi+1)
DP(P, vi+1 , vj)

Time complexity
 T(n) = O(n) + T(n-1) = O(n2)

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’ ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’ ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε

Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

Summary: Driemel et al.

Simple simplification: can be computed in O(n) time

Property 1:
All edges (except the last one) have length at least ε.

Property 2: δF(P,P’) ≤ ε

(δF = Fréchet distance. We will discuss it later…)

Imai-Iri

Both previous algorithms are simple and fast but do not give a
bound on the complexity of the simplification!

Imai-Iri 1988 gave an algorithm that produces a ε-simplification
with the minimum number of links.

Imai-Iri

Input polygonal path P = 〈p1,…,pn〉 and threshold ε

1. Build a graph G containing all valid shortcuts.
2. Find a minimum link path from p1 to pn in G

Imai-Iri

Input polygonal path P = 〈p1,…,pn〉 and threshold ε

1. Build a graph G containing all valid shortcuts.
2. Find a minimum link path from p1 to pn in G

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

> ε

Imai-Iri

Find all possible valid shortcuts

<ε
<ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

>ε

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

Find all possible valid shortcuts

Imai-Iri

All possible shortcuts!

Imai-Iri

1. Build a directed graph of valid shortcuts.
2. Compute a shortest path from p1 to pn using breadth-first
search.

Imai-Iri

1. Build a directed graph of valid shortcuts.
2. Compute a shortest path from p1 to pn using breadth-first
search.

Imai-Iri

Brute force running time: ?
 #possible shortcuts ?

Summary: Imai-Iri

Running time: O(n3)
 O(n2) possible shortcuts

O(n) per shortcut ⇒ O(n3) to build graph
O(n2) BFS in the graph

Output: A path with minimum number of edges

Improvements:
 Chan and Chin’92: O(n2)

Limits of the previous approaches

● What about time and speeds?
○ Time-stamps were never considered in the algorithms
○ They considered on impact on space / geometry of trajectories
○ What impact on time-related aspects, e.g. speed?

time

X

Impact on speed

time

X

time

speed

time

X

time

speed

Time-aware simplification methods

● Must consider the 3D (space + time) nature of points
● Simplest approach: modified Driemel at al.

Simple simplification with speeds (P = 〈p1,…,pn〉, ε)

P’:= 〈p1〉
i:=1
while i<n do
 q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε or |AS(q,pi) - AS(pi-1,pi)| > ε
if no such vertex then set i:=n
add pi to P’

end
return P’

 AS(a,b) = average speed between a and b
= dist(a,b) / [time(b) - time(a)]

INTERVALLO

How fast is a cow?

INTERVALLO

How fast is a cow?
● Trajectory compression / simplification changes the scale of the analysis

○ Simplified data → macroscopic analysis
○ Detailed data → microscopic analysis

● Several movement characteristics can be affected

INTERVALLO

How fast is a cow?
How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human
movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)

https://doi.org/10.1111/j.1467-9671.2011.01256.x
https://doi.org/10.1007/s10109-021-00370-6

INTERVALLO

How fast is a cow?
How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human
movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)

Cow ID

https://doi.org/10.1111/j.1467-9671.2011.01256.x
https://doi.org/10.1007/s10109-021-00370-6

