4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 77
~

: P
where for each character x, f?&\ﬁ 1) is computed by replacipg €ach wild card with
character x_ B summary . ‘ A

Theerem 4.3.1,The match-cous problemcan pesolved inNQ (m log#t) timw even if

nbounded mlimber of witd catds are allow: ca’'mgither P or T.\» 7
' >
o~ r"/ -

v . . - . o C N
Jiter, after discussing suffix teesand common ancesdrs, we will praysefit in Section®3
. different, mqre’ comparison-basedhapproach to.hdndlind\wild cards tha appear-in both
strings. " - T N

4.4. Karp-Rabin fingerprint methods for exact match

The Shift-And method assumes that we can efficiently shift a vector of bits, and the
generalized Shift-And method assumes that we can efficiently increment an integer by
one. If we treat a (row) bit vector as an integer number then a left shift by one bit results
in the doubling of the number (assuming no bits fall off the left end). So it is not much of
an extension to assume, in addition to being able to increment an integer, that we can also
efficiently multiply an integer by two. With that added primitive operation we can turn
the exact match problem (again without mismatches) into an arithmetic problem. The first
result will be a simple linear-time method that has a very small probability of making an
error. That method will then be transformed into one that never makes an error, but whose
running time is only expected to be linear. We will explain these results using a binary
string P and a binary text 7. That is, the alphabet is first assumed to be just {0, 1}. The
extension to larger alphabets is immediate and will be left to the reader.

4.4.1. Arithmetic replaces comparisons

Definition For a text string T, let T," denote the n-length substring of 7 starting at
character r. Usually, is known by context, and 7" will be replaced by T,.

Definition For the binary pattern P, let
H(P) = "2""pP(j).
i=1

Similarly, let

i=n

H(T,) = Zz"—"T(r +i—1).

i=]

That is, consider P to be an n-bit binary number. Similarly, consider T to be an n-bit
binary number. For example, if P = 0101 then n = 4 and HP)=2x04+22x1+
2'x042%x1=5ifT = 101101010, n = 4, and r = 2, then H(T,) = 6.

Clearly, if there is an occurrence of P starting at position r of T then H(P) = H(T,).
However, the converse is also true, so

Theorem 4.4.1. There is an occurrence of P starting at position r of T if and only if
H(P)= H(T.).

78 SEMINUMERICAL STRING MATCHING

The proof, which we leave to the reader, is an immediate consequence of the fact that
every integer can be written in a unique way as the sum of positive powers of two.

Theorem 4.4.1 converts the exact match problem into a numerical problem, comparing
the two numbers H(P) and H(T,) rather than directly comparing characters. But unless
the pattern is fairly small, the computation of H(P) and H(T;) will not be efficient.” The
problem is that the required powers of two used in the definition of H(P) and H(T,)
grow large too rapidly. (From the standpoint of complexity theory, the use of such large
numbers violates the unit-time random access machine (RAM) model. In that model,
the largest allowed numbers must be represented in O[log(n + m)] bits, but the number
2" requires n bits. Thus the required numbers are exponentially too large.) Even worse,
when the alphabet is not binary but say has ¢ characters, then numbers as large as ¢" are
needed.

In 1987 R. Karp and M. Rabin [266] published a method (devised almost ten years
earlier), called the randomized fingerprint method, that preserves the spirit of the above
numerical approach, but that is extremely efficient as well, using numbers that satisfy the
RAM model. It is a randomized method where the only if part of Theorem 4.4.1 continues
to hold, but the if part does not. Instead, the if part will hold with high probability. This is
explained in detail in the next section.

4.4.2. Fingerprints of P and T

The general idea is that, instead of working with numbers as large as H (P)and H(T,), we
will work with those numbers reduced modulo arelatively small integer p. The arithmetic
will then be done on numbers requiring only a small number of bits, and so will be efficient.
But the really attractive feature of this method is a proof that the probability of error can
be made small if p is chosen randomly in a certain range. The following definitions and
lemmas make this precise.

Definition For a positive integer p, H,(P) is defined as H(P) mod p. Thatis H,(P)is
the remainder of H(P) after division by p. Similarly, H,(7})1s defined as H(T,) mod p.
The numbers H,(P) and H,(T,) are called fingerprints of P and T,.

Already, the utility of using fingerprints should be apparent. By reducing H(P) and
H(T,) modulo a number p, every fingerprint remains in the range 0to p — 1, so the size of
a fingerprint does not violate the RAM model. But if H(P) and H(T,) must be computed
before they can be reduced modulo p, then we have the same problem of intermediate
numbers that are too large. Fortunately, modular arithmetic allows one to reduce at any
time (i.e., one can never reduce too much), so that the following generalization of Horner’s
rule holds:

Lemmadd.l. H,(P) = {[...({[P(1)x2 mod p+ P(2)]x2 mod p+ P(3)} x2 mod p+
P(4))...] mod p+ P(n)} mod p. and no number ever exceeds 2 p during the computation
of H,(P).

> One can more efficiently compute H(7,...1) from H(T,) than by following the definition directly (and we will need
that later on), but the time to do the updates is not the issue here.

iy e e

ot e,

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 79

Forexample.if P = 101111 and p =7, then H(P) = 47 and H,(P)=47 mod 7 = 5.
Moreover, this can be computed as follows:

I x2mod7+0=2
2x2mod7+1=35
S5x2mod7+1=4
4x2mod7+1=2
2x2mod7+1=5
Smod7 =35.

The point of Horner’s rule is not only that the number of multiplications and additions
required is linear, but that the intermediate numbers are always kept small.

Intermediate numbers are also kept small when computing H,(T;) for any r, since that
computation can be organized the way that H,(P) was. However, even greater efficiency

is possible: Forr > 1, H,(T,)can be computed from H (T, _;) with only a small constant
number of operations. Since

Hp(Tr) == H(T;) mod P
and
HT) =2 x HT_) = 2"T(r ~ 1)+ T(r +n - 1),

it follows that

H,(T,) = [(2 x H(T,_,) mod P)—2"mod p) x T(r — 1) + I(r +n— 1)l mod p.

Further,
2" mod p =2 x (2"' mod p) mod p.

Therefore, each successive power of two taken mod p and each successive value H (1)
can be computed in constant time.

Prime moduli limit false matches

Clearly, if P occursin T starting at position r then H,(P)= H,(T,), but now the converse
does not hold for every p. That is, we cannot necessarily conclude that P occurs in T
starting at r just because H,(P) = H,(T,).

Definition If H,(P) = H,(T,) but P does not occur in T starting at position r, then
we say there is a false match between P and T at position r. If there is some position r
such that there is a false match between P and T at r, then we say there is a false match
between P and T.

The goal will be to choose a modulus p small enough that the arithmetic is kept
efficient, yet large enough that the probability of a false match between P and T is kept
small. The key comes from choosing p to be a prime number in the proper range and
exploiting properties of prime numbers. We will state the needed properties of prime
numbers without proof.

Definition For a positive integer u. 7 (u) is the number of primes that are less than or
equal to u.

The following theorem is a variant of the tamous prime number theorem.

Theorem 4.4.2. = < (u) < 1.262— where In(u) is the base e logarithm of u [383].

nue — Incu)

80 SEMINUMERICAL STRING MATCHING

Lemma 4.4.2. [fu > 29, then the product of all the primes that are less than or equal to
u is greater than 2" [383].

For example, for 4 = 29 the prime numbers less than or equal to 29 are 2,5,7,11, 13,
17. 19, 23. and 29. Their product is 2,156,564.410 whereas 29 is 536,870,912.

Corollary 4.4.1. If 1 > 29 and x is any number less than or equal to 2“, then x has fewer
than :7(u) (distinct) prime divisors.

PROOF Suppose x does have k > m(u) distinct prime divisors g1, g2, - . ., qr. Then
24 > x > ¢qa .. .q (the first inequality is from the statement of the corollary, and the
second from the fact that some primes in the factorization of x may be repeated). But
414> - - . qi is at least as large as the product of the smallest k primes, which is greater than
the product of the first 7 (1) primes (by assumption that k > 7 (u)). However, the product
of the primes less than or equal to u is greater than 2 (by Lemma 4.4.2). So the assumption
that k > 7 (1) leads to the contradiction that 2 > 2“, and the lemma is proved. O

The central theorem

Now we are ready for the central theorem of the Karp—Rabin approach.

Theorem 4.4.3. Let P and T be any strings such that nm > 29, where n and m are the
lengths of P and T, respectively. Let I be any positive integer. If p is a randomly chosen
prime number less than or equal to 1, then the probability of a false match between P and

T is less than or equal to —F* w(nm)
)’

PROOF Let R be the set of positions in T where P does not begin. That is, s € R if
and only if P does not occur in 7' beginning at s. For each s € R, H(P) # H(T}). Now
consider the product [T, z(|H(P) — H(T;)|). That product must be at most 2" since for
any s, H(P) — H(T;) < 2" (recall that we have assumed a binary alphabet). Applying
Corollary 4.4.1, T,cr(|H(P) — H(T})|) has at most 77 (nm) distinct prime divisors.

Now suppose a false match between P and T occurs at some position r of T. That
means that H(P) mod p = H(T,) mod p and that p evenly divides H(P) — H(T,).
Trivially then, p evenly divides I1,cr(|1H(P) — H (T.)]), and so p is one of the prime
divisors of that product. If p allows a false match to occur between P and T, then p must
be one of a set of at most 77 (nm) numbers. But p was chosen randomly from a set of 77 (/)
numbers, so the probability that p is a prime that allows a false match between PandT isat

7(11)11)
most BTk O

Notice that Theorem 4.4.3 holds for any choice of pattern P and text T such that
nm > 29. The probability in the theorem is not taken over choices of P and T but rather
over choices of prime p. Thus, this theorem does not make any (questionable) assumptions
about P or T being random or generated by a Markov process, etc. It works for any P and
T'! Moreover, the theorem doesn’t just bound the probability that a false match occurs at
a fixed position r, it bounds the probability that there is even a single such position r in
T . It is also notable that the analysis in the proof of the theorem feels “weak”. That is, it
onlv develops a very weak property of a prime p that allows a false match, namely being
one of at most 7 (nm) numbers that divide [T,cx(|H(P) — H(T,)}). This suggests that the
true probubility of a false match occurring between P and T is much less than the bound
established in the theorem.

Theorem 4.4.3 leads to the following random fingerprint algorithm for finding all oc-
currences of Pin T.

S A el

Tt B e

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 81

Random fingerprint algorithm

Choose a positive integer I (to be discussed in more detail below).

2. Randomly pick a prime number less than or equal to /. and compute H,(P). (Efficient
randomized algorithms exist for finding random primes [331].)
3. Foreach position r in T. compute H,(T,)and test to see if it equals H,(P). It the numbers

are equal. then either declare a probable match or check explicitly that P occurs in T
starting at that position r.

Given the fact that each H,(T,) can be computed in constant time from H,(T,_,), the
fingerprint algorithm runs in O(m) time, excluding any time used to explicitly check a
declared match. It may, however, be reasonable not to bother explicitly checking declared
matches, depending on the probability of an error. We will return to the issue of checking
later. For now, to fully analyze the probability of error, we have to answer the question of
what 7 should be.

How to choose I

The utility of the fingerprint method depends on finding a good value for I. As I increases,
the probability of a false match between P and T decreases, but the allowed size of P
increases, increasing the effort needed to compute H,(P) and H,(T,). Is there a good
balance? There are several good ways to choose [depending on n and m. One choice is to
take / = nm?. With that choice the largest number used in the algorithm requires at most
d(logn + logm) bits, satisfying the RAM model requirement that the numbers be kept
small as a function of the size of the input. But, what of the probability of a false match?

Corollary 4.4.2. When I = nm?, the probability of a false match is at most %}3—

PROOF By Theorem 4.4.3 and the prime number theorem (Theorem 4.4.2), the pro-
bability of a false match is bounded by

T(nm) < 1260 In(nm=) | 26l [ln(n) +2ln(m):| - 2.53.

mnm?) T 7 am? In(nm) T m | In(n)+1Inm) | = m O

A small example from [266] illustrates this bound. Take n = 250, m = 4000, and
hence / = 4 x 10° < 2%, Then the probability of a false match is at most 222 < 1073,
Thus, with just a 32-bit fingerprint, for any P and T the probability that even a single one
of the algorithm’s declarations is wrong is bounded by 0.001.

Alternately, if I = n’m then the probability of a false match is O(1/n), and since it
takes O(n) time to determine whether a match is false or real, the expected verification
time would be constant. The result would be an O(m) expected time method that never

has a false match.

Extensions

If one prime is good, why not use several? Why not pick k primes Pi. P2, ... pr randomly
and compute & fingerprints? For any position r. there can be an occurrence of P starting
at r only if H,(P) = H,(T,) for every one of the k selected primes. We now define a
false match between P and T to mean that there is an r such that P does not occur in T
starting at 7. but H, (P) = H, (T,) for each of the k primes. What now is the probability
ot a false match between P and 77 One bound is fairly immediate and intuitive.

82 SEMINUMERICAL STRING MATCHING

Theorem 4.4.4. When k primes are chosen randomly between 1 and I and k fingerprints

are used, the probability of a false match between P and T is at most [1’;‘%;—’]"'.

PROOF We saw in the proof of Theorem 4.4.3 that if p is a prime that allows H,(P) =

H,(T,) at some position r where P does not occur, then p is in a set of at most 7 (nm)

integers. When k fingerprints are used, a false match can occur only if each of the k primes

is in that set, and since the primes are chosen randomly (independently), the bound from

Theorem 4.4.3 holds for each of the primes. So the probability that all the primes are in
T(nm)

the set is bounded by [Z5=!1¥, and the theorem is proved. O

As an example, if k = 4 and n.m, and I are as in the previous example, then the
probability of a false match between P and T is at most by 10~'2. Thus, the probability of
a false match is reduced dramatically, from 1073 to 107!2, while the computational effort
of using four primes only increases by four times. For typical values of n and m, a small
choice of k will assure that the probability of an error due to a false match is less than the
probability of error due to a hardware malfunction.

Even lower limits on error

The analysis in the proof of Theorem 4.4.4 is again very weak, because it just multiplies
the probability that each of the k primes allows a false match somewhere in T. However,
for the algorithm to actually make an error at some specific position r, each of the primes
must simultaneously allow a false match at the same 7. This is an even less likely event.
With this observation we can reduce the probability of a false match as follows:

Theorem 4.4.5. When k primes are chosen randomly between 1 and I and k fingerprints

are used, the probability of a false match between P and T is at most m[%%—i]k .

PROOF Suppose that a false match occurs at some fixed position r. That means that each
prime p; must evenly divide |H(P) — H(T))}. Since |H(P) — H(T,)| < 2", there are
at most (n) primes that divide it. So each p; was chosen randomly from a set of w (/)
primes and by chance is part of a subset of 7 (n) primes. The probability of this happening
at that fixed r is therefore [Z—E—%]k. Since there are m possible choices for r, the probability
of a false match between P and T (i.e., the probability that there is such an r) is at most

m[Z22}¥, and the theorem is proved. O

Assuming, as before, that I = nm?, a little arithmetic (which we leave to the reader)
shows

Corollary 4.4.3. When k primes are chosen randomly and used in the fingerprint algo-
rithm, the probability of a false match between P and T is at most (1.26)km~=D(1 +
0.6Inm)*.

Applying this to the running example of n = 250, m = 4000, and k = 4 reduces the
probability of a false match to at most 2 x 1072,

We mention one further refinement discussed in [266]. Returning to the case where only
a single prime is used, suppose the algorithm explicitly checks that P occurs in T when
H,(P)= H,(T,), and it finds that P does not occur there. Then one may be better off by
picking 2 new prime to use for the continuation of the computation. This makes intuitive
sense. Theorem 4.4.3 randomizes over the choice of primes and bounds the probability
that a randomly picked prime will allow a false match anywhere in T But once the prime
has been shown to allow a false match, it is no longer random. It may well be a prime that

G e el

RS

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 83

allows numerous false matches (a demon seed). Theorem 4.4.3 says nothing about how .
bad a particular prime can be. But by picking a new prime after each error is detected, we
can apply Corollary 4.4.2 to each prime, establishing

Theorem 4.4.6. If a new prime is randomly chosen after the detection of an error, then

N aye . “ R
for any pattern and text the probubility of t errors is at most (==Y

This probability falls so rapidly that one is effectively protected against a long series
of errors on any particular problem instance. For additional probabilistic analysis of the
Karp—Rabin method, see [182].

Checking for error in linear time

All the variants of the Karp-Rabin method presented above have the property that they
tind a// true occurrences of P in T, but they may also find false matches — Jocations
where P is declared to be in T, even though it is not there. If one checks for P at each
declared location, this checking would seem to require ©(nm) worst-case time, although
the expected time can be made smaller. We present here an O(m)-time method, noted
first by S. Muthukrishnan [336]. that determines if any of the declared locations are false
matches. That is. the method either verifies that the Karp—Rabin algorithm has found no
false matches or it declares that there is at least one talse match (but it may not be able to
find all the faise matches) in O(m) time.

The method is related to Galil’s extension of the Boyer-Moore algorithm (Section 3.2.2),
but the reader need not have read that section. Consider a list £ of (starting) locations in T
where the Karp—Rabin algorithm declares P to be found. A run is a maximal interval of
consecutive starting locations /;, l», [, in £ such that every two successive numbers
in the interval differ by at most n/2 (i.e., sy —I; < n/2). The method works on each run
separately, so we first discuss how to check for false matches in a single run.

In a single run, the method explicitly checks for the occurrence of P at the first two
positions in the run, /; and [,. If P does not occur in both of those locations then the
method has found a false match and stops. Otherwise, when P does occur at both /; and
[>. the method learns that P is semiperiodic with period /; — [(see Lemma 3.2.3). We
use d to refer to I, — I}, and we show that d is the smallest period of P. If d is not the
smallest period, then d must be a multiple of the smallest period, say d’. (This follows
easily from the GCD Theorem, which is stated in Section 16.17.1.) (page 431). But that
implies that there is an occurrence of P starting at position I, + d' < d», and since the
Karp—Rabin method never misses any occurrence of P, that contradicts the choice of I,
as the second occurrence of P in the interval between /, and /.. So d must be the smallest
period of P. and it follows that if there are no false matches in the run, then /.y — [; = d
for cach i in the run. Hence. as a first check, the method verifies that [, — I; = d for
cach i: it declares a false match and stops if this check fails for some i. Otherwise, as in
the Galil method, to check each location in L. it suffices to successively check the last d
characters in each declared occurrence of P against the last d characters of P. That is,
for position ;. the method checks the d characters of T' starting at position l; +n — d. If
any of these successive checks finds a mismatch, then the method has found a false match
in the run and stops. Otherwise. P does in fact occur starting at each declared location
in the run.

For the time analysis. note first that no character of T is examined more than twice
during a check of a single run. Moreover, since two runs are separated by at least n/2
positions and each run is at least n positions long. no character of 7' can be examined in

84 SEMINUMERICAL STRING MATCHING

more than two consecutive runs. It follows that the total time for the method, over all runs,
1s Otm).

With the ability to check for false matches in O (m) time, the Karp—Rabin algorithm can
be converted from a method with a small probability of error that runs in O(m) worst-case
time, to one that makes no error, but runs in O(m) expected time (a conversion from a
Monte Carlo algorithm to a Las Vegas algorithm). To achieve this, simply (re)run and
(re)check the Karp—Rabin algorithm until no false matches are detected. We leave the
details as an exercise.

4.4.3. Why fingerprints?

The Karp-Rabin tingerprint method runs in linear worst-case time, but with a nonzero
(though extremely small) chance of error. Alternatively, it can be thought of as a method
that never makes an error and whose expected running time is linear. In contrast, we have
seen several methods that run in linear worst-case time and never make errors. So what 1s
the point of studying the Karp—Rabin method?

There are three responses to this question. First, from a practical standpoint, the method
is simple and can be extended to other problems, such as two-dimensional pattern match-
ing with odd pattern shapes — a problem that is more difficult for other methods. Second,
the method is accompanied by concrete proofs, establishing significant properties of the
method’s performance. Methods similar in spirit to fingerprints (or filters) predate the
Karp-Rabin method, but, unlike the Karp—Rabin method, they generally lack any theoret-
ical analysis. Little has been proven about their performance. But the main attraction is that
the method is based on very different ideas than the linear-time methods that guarantee
no error. Thus the method is included because a central goal of this book is to present a
diverse collection of ideas used in a range of techniques, algorithms, and proofs.

4.5. Exercises

1. Evaluate empirically the Shift-And method against methods discussed earlier. Vary the
sizes of Pand T.

2. Extend the agrep method to solve the problem of finding an “occurrence” of a pattern P
inside a text T, when a small number of insertions and deletions of characters, as well as
mismatches, are allowed. That is, characters can be inserted into P and characters can
be deleted from P.

3. Adapt Shift-And and agrep to handle a set of patterns. Can you do better than just handling
each pattern in the set independently?

4. Prove the correctness of the agrep method.

5. Show how to efficiently handle wild cards (both in the pattern and the text) in the Shift-And
approach. Do the same for agrep. Show that the efficiency of neither method is affected
by the number of wild cards in the strings.

6. Extend the Shift-And method to efficiently handle regular expressions that do not use the
Kleene closure. Do the same for agrep. Explain the utility of these extensions to collections
of biosequence patterns such as those in PROSITE.

7. We mentioned in Exercise 32 of Chapter 3 that PROSITE patterns often specify a range for
the number of times that a subpattern repeats. Ranges of this type can be easily handled
by the O(nm) regular expression pattern matching method of Section 3.6. Can such range

