Greedy Aiggy’izhms

In Wall Street, that iconic movie of the 1980s, Michael Douglas gets up in
front of a room full of stockholders and proclaims, “Greed . . . is good. Greed
is right. Greed works.” In this chapter, we’ll be taking a much more understated
perspective as we investigate the pros and cons of short-sighted greed in the
design of algorithms. Indeed, our aim is to approach a number of different
computational problems with a recurring set of questions: Is greed good? Does
greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy
algorithm. An algorithm is greedy if it builds up a solution in small steps,
choosing a decision at each step myopically to optimize some underlying
criterion. One can often design many different greedy algorithms for the same
problem, each one locally, incrementally optimizing some different measure
on its way to a solution.

When a greedy algorithm succeeds in solving a nontrivial problem opti-
mally, it typically implies something interesting and useful about the structure
of the problem itself; there is a local decision rule that one can use to con-
struct optimal solutions. And as we’ll see later, in Chapter 11, the same is true
of problems in which a greedy algorithm can produce a solution that is guar-
anteed to be close to optimal, even if it does not achieve the precise optimum.
These are the kinds of issues we’ll be dealing with in this chapter. It's easy to
invent greedy algorithms for almost any problem; finding cases in which they
work well, and proving that they work well, is the interesting challenge.

The first two sections of this chapter will develop two basic methods for
proving that a greedy algorithm produces an optimal solution to a problem.
One can view the first approach as establishing that the greedy algorithm stays
ahead. By this we mean that if one measures the greedy algorithm’s progress

Chapter 4 Greedy Algorithms

in a step-by-step fashion, one sees that it does better than any other algorithm
at each step; it then follows that it produces an optimal solution. The second
approach is known as an exchange argument, and it is more general: one
considers any possible solution to the problem and gradually transforms it
into the solution found by the greedy algorithm without hurting its guality.
Again, it will follow that the greedy algorithm must have found a solution that
is at least as good as any other solution.

Following our introduction of these two styles of analysis, we focus on
several of the most well-known applications of greedy algorithms: shortest
paths in a graph, the Minimum Spanning Tree Problem, and the construc-
tion of Huffman codes for performing data compression. They each provide
nice examples of our analysis technigues. We also explore an interesting re-
lationship between minimum spanning trees and the long-studied problem of
clustering. Finally, we consider a more complex application, the Minimum-
Cost Arborescence Problem, which further extends our notion of what a greedy
algorithm is. '

4.1 Interval Scheduling: The Greedy Algorithm
Stays Ahead

Let’s recall the Interval Scheduling Problem, which was the first of the five
representative problems we considered in Chapter 1. We have a set of requests
{1,2,...,n}; the ith request corresponds to an interval of time starting at s(i)
and finishing at f(i). (Note that we are slightly changing the notation from
Section 1.2, where we used s; rather than s@@) and f; rather than f(D. This
change of notation will make things easier to talk about in the proofs.) We’ll
say that a subset of the requests is compatible if no two of them overlap in time,
and our goal is to accept as large a compatible subset as possible. Compatible
sets of maximum size will be called optimal.

=~ Designing a Greedy Algorithm
Using the Interval Scheduling Problem, we can make our discussion of greedy
algorithms much more concrete. The basic idea in a greedy algorithm for
interval scheduling is to use a simple rule to select a first request ;. Once
a request i; is accepted, we reject all requests that are not compatible with ;.
We then select the next request i, to be accepted, and again reject all requests
that are not compatible with i,. We continue in this fashion until we run out
of requests. The challenge in designing a good greedy algorithm is in deciding
which simple rule to use for the selection—and there are many natural rules
for this problem that do not give good solutions.

Let’s try to think of some of the most natural rules and see how they work.

4.1 Interval Schednling: The Greedy Algorithm Stays Ahead

o The most obvif)us rule might be to always select the available request
that starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

- This method does not yield an optimal solution. If the earliest request
i 1_s for a very long interval, then by accepting request { we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution

In a really bad case—say, when the finish time f(i) is the rnaximurr;
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
¥equest, while the optimal solution could accept many. Such a situatii
is depicted in Figure 4.1(a). ‘ "

©

This 'might suggest that we should start out by accepting the request that
regmres the smallest interval of time—namely, the request for which
f(@) — s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in

the middle would prevent us from accepti
(epting the other t i
an optimal solution. ’ o, whieh form

(@
I k
(b)
| amm— I . ‘
. ;
()

Siﬁbﬁs ?:ilui i;lizzaﬁ:so;gi; I.nt;iwal Scheduling Problem on which natural greedy
! solution. In (a), it does not work i

that starts earliest; in (b), it does e oo
i ; \ not work to select the shortest ; i i

does not work to select the interval with the fewest conflicts. st fntervali andin (<) 1t

117

118

Chapter 4 Greedy Algorithms

o In the previous greedy rule, our problem was that the second request
competes with both the first and the third—that is, accepting this request
made us reject two other requests. We could design a greedy algorithm
that is based on this idea: for each request, we count the number of
other requests that are not compatible, and accept the request that has
the fewest number of noncompatible requests. (In other words, we select
the interval with the fewest “conflicis.”) This greedy choice would lead
to the optimum solution in the previous example. In fact, it is quite a
bit harder to design a bad example for this rule; but it can be done, and
we've drawn an example in Figure 4.1(c). The unique optimal solution
in this example is to accept the four requests in the top row. The greedy
method suggested here accepts the middle request in the second row and
thereby ensures a solution of size no greater than three.

A greedy rule that does lead to the optimal solution is based on a fourth
idea: we should accept first the request that finishes first, that is, the request i
for which f(i) is as small as possible. This is also quite a natural idea: we ensure
that our resource becomes free as soon as possible while still satisfying one’
request. In this way we can maximize the time left to satisfy other requests.

Let us state the algorithm a bit more formally. We will use R to denote
the set of requests that we have neither accepted nor rejected vet, and use A
to denote the set of accepted requests. For an example of how the algorithm

runs, see Figure 4.2.

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request i€R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile)
Return the set A as the set of accepted requests

A~ Analyzing the Algorithm
While this greedy method is quite natural, it is certainly not obvious that it
returns an optimal set of intervals. Indeed, it would only be sensible to reserve
judgment on its optimality: the ideas that led to the previous nonoptimal
versions of the greedy method also seemed promising at first.
As a start, we can immediately declare that the intervals in the set A
returned by the algorithm are all compatible.

(4.1) A is a compatible set of requests.

v

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead

\ 6, . 8
Intervals numbered in order I-——l—l ,__._i. T 5,) 9
> b i
—_t et 7
U S 4 4
Selecting interval 1 —_ 5., 5, 9
o P
—2,
Selecting interval 3 —_— 35004 5, 9
RSN S —
—3
Selecting interval 5 —_— 3, 5 . 9
b
—
Selecting interval 8 L L { ' E I 2
{ } 4 [

f’;‘;;ure;l izarZadmﬁ}\ee;un (;i the én;ﬁrvaj Scheduling Algorithm. At each step the selected
erv; , an I . i
iervals are d dashedlmlines. e intervals deleted at the corresponding step are

What vs{e need to show is that this solution is optimal. So, for purposes of
comparison, let O be an optimal set of intervals. Ideally one mi’ght want to show
that A = O, but this is too much to ask: there may be many optimal solutions
and at best A is equal to a single one of them. So instead we will simply sh w
that |A] = |Q|, that is, that A contains the same number of interval 20

hence is also an optimal solution. Heasfand

The'idea t.mderlying the proof, as we suggested initially, will be to find

a _sl?nse in which our greedy algorithm “stays ahead” of this solution ©. We

:218 con:parfe ﬂt]he partial solutions that the greedy algorithm constructs to initial
ments of the solution O, and show that the greedy algori is doi

in a step-by-step fashion. Breedy slgorthm s doing beter

. We inm.Jduc‘e some notation to help with this proof. Let i;, ..., i be thé set
;) requests in A in the order they were added to A. Note that |A| = k. Similarly,
et the set of requests in O be denoted by jy, . . ., j,. Our goal is to prove tha;

k'= m. Assume that the requests in O are also ordered in the natural left-to-
rhlg.ht ordgr of the corresponding intervals, that is, in the order of the start and
finish points. Note that the requests in O are compatible, which implies that
the start points have the same order as the finish points. ’ ? :

119

120

Chapter 4 Greedy Algorithms

Can the greedy algorithm’s
rthinterval really finish later?

i ?
e | — - —
Jr1 , ' Jr J

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

Our intuition for the greedy method came from wanting our resource to
become free again as soon as possible after satisfying the first request. And
indeed, our greedy rule guarantees that f(i;) < f(jp). This is the sense in which
we want to show that our greedy rule “stays ahead”—that each of its intervals
finishes at least as soon as the corresponding interval in the set 0. Thus we now
prove that for each r > 1, the M accepted request in the algorithm’s schedule
finishes no later than the r' request in the optimal schedule. :

(4.2) For all indices r < k we have f(i;) <f(p)-

Proof. We will prove this statement by induction. For r =1 the statement is
clearly true: the algorithm starts by selecting the request i with minimum
finish time.

Now let r> 1. We will assume as our induction hypothesis that the
statement is true for r — 1, and we will try to prove it for r. As shown in
Figure 4.3, the induction hypothesis lets us assume that fl—) <fGr-1)- In
order for the algorithm’s r! interval not to finish earlier as well, it would
need to “fall behind” as shown. But there’s a simple reason why this could
not happen: rather than choose a later-finishing interval, the greedy algorithm
always has the option (at worst) of choosing j, and thus fulfilling the induction
step. -

We can make this argument precise as follows. We know (since O consists
of compatible intervals) that f(j,_;) < 5(j;). Combining this with the induction
hypothesis f(ir_p) < f(j,—1), we get f(i;_;) < s(;). Thus the interval j; is in the
set R of available intervals at the time when the greedy algorithm selects i,.
The greedy algorithm selects the available interval with smallest finish time;
since interval j, is one of these available intervals, we have f@) <f@,). This
completes the indnction step. &

Thus we have formalized the sense in which the greedy algorithm is
remaining ahead of O: for each r, the rih interval it selects finishes at least
as soon as the ! interval in ©. We now see why this implies the optimality
of the greedy algorithm’s set A.

4.1 V Interval Scheduling: The Greedy Algorithm Stays Ahead

(4.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, then
an optimal set O must have more requests, that is, we must have m > k.
Applying (4.2) with r =k, we get that f(i) <f(j). Since m > k, there is a
request ji,; in O. This request starts after request j, ends, and hence after
i, ends. So after deleting all requests that are not compatible with requests
i}, .., the set of possible requests R still contains ji, ;. But the greedy
algorithm stops with request i, and it is only supposed to stop when R is
empty—a contradiction. m

Implementation and Running Time We can make our algorithm run in time
O(n log n) as follows. We begin by sorting the n requests in order of finishing
time and labeling them in this order; that is, we will assume that (@) < ()
when i < j. This takes time O(n log n). In an additional O(n) time, we construct
an array S[1...n] with the property that S[i] contains the value s(7).

We now select requests by processing the intervals in order of increasing
f(©). We always select the first interval; we then iterate through the intervals in
order until reaching the first interval j for which s(j) > f(1); we then select this
one as well. More generally, if the most recent interval we’ve selected ends
at time f, we continue iterating through subsequent intervals until we reach
the first j for which 5(j) > f. In this way, we implement the greedy algorithm
analyzed above in one pass through the intervals, spending constant time per
interval. Thus this part of the algorithm takes time O(n).

Extensions

The Interval Scheduling Problem we considered here is a quite simple schedul-
ing problem. There are many further complications that could arise in practical
settings. The following point out issues that we will see later in the book in
various forms.

© In defining the problem, we assumed that all requests were known to
the scheduling algorithm when it was choosing the compatible subset.
It would also be natural, of course, to think about the version of the
problem in which the scheduler needs to make decisions about accepting
or rejecting certain requests before knowing about the full set of requests.
Customers (requestors) may well be impatient, and they may give up
and leave if the scheduler waits too long to gather information about all
other requests. An active area of research is concerned with such on-
line algorithms, which must make decisions as time proceeds, without
knowledge of future input.

121

