K. Mehlhorn e P. Sandurs
Algorithms and date Andres: the boric Toolbox
Springer, 2008

5.5 Selection

115

As for quicksort, the worst-case execution time of quickselect is quadratic. But the expected execution time is linear and hence is a logarithmic factor faster than quicksort.

Theorem 5.8. The quickselect algorithm runs in expected time O(n) on an input of size n.

Proof. We shall give an analysis that is simple and shows a linear expected execution time. It does not give the smallest constant possible. Let T(n) denote the expected execution time of quickselect. We call a pivot good if neither |a| nor |c| is larger than 2n/3. Let γ denote the probability that a pivot is good; then $\gamma \ge 1/3$. We now make the conservative assumption that the problem size in the recursive call is reduced only for good pivots and that, even then, it is reduced only by a factor of 2/3. Since the work outside the recursive call is linear in n, there is an appropriate constant c such that

 $T(n) \le cn + \gamma T\left(\frac{2n}{3}\right) + (1-\gamma)T(n).$

Solving for T(n) yields

$$T(n) \le \frac{cn}{\gamma} + T\left(\frac{2n}{3}\right) \le 3cn + T\left(\frac{2n}{3}\right) \le 3c\left(n + \frac{2n}{3} + \frac{4n}{9} + \dots\right)$$
$$\le 3cn\sum_{i \ge 0} \left(\frac{2}{3}\right)^i \le 3cn\frac{1}{1 - 2/3} = 9cn.$$

la = #elementi < perus
Lo 1a169

1c1= #elementi > perus
Lo 1c1 € n-9

· Si assume de non possous esistère elementi upueli.

 $\Rightarrow |a| = q - 1$ |c| = n - q

dopo
PARTITION

| A | ICI