Solutions for Chapter 16: Greedy Algorithms 16-11

+ For the approach of always selecting the compatible activity that overlaps the
fewest other remaining activities:

i | 1 2 3 4 5 6 7 8 9 10 11
S; 01 1 1 2 3 4 5 5 5 6
fi 2 33 3 45 6 77 7 8
of overlapping activities | 3 4 4 4 4 2 4 4 4 4 3

This approach first selects g, and after that choice it can select only two other
activities (one of ay, a;, a3, a4 and one of ag, ag, a9, a;1). An optimal solution
is {Cll, as, ar, all}.

* For the approach of always selecting the compatible remaining activity with
the earliest start time, just add one more activity with the interval [0, 14) to
the example in Section 16.1. It will be the first activity selected, and no other
activities are compatible with it.

Solution to Exercise 16.2-2

The solution is based on the optimal-substructure observation in the text: Let i
be the highest-numbered item in an optimal solution S for W pounds and items
1,...,n. Then 8 = S — {i} must be an optimal solution for W — w; pounds
and items 1, ...,i — 1, and the value of the solution S is y plus the value of the
subproblem solution §'.

We can express this relationship in the following formula: Define c[i, w] to be the

value of the solution for items 1, ..., i and maximum weight w. Then
0 ifi=00rw=0,
cli,w]=13cli — 1, w] ifw;, >w,

max(v; +cli — 1, w —w;l,cli —1,w]) ifi >0and w > w; .

The last case says that the value of a solution for i items either includes item i,
in which case it is v; plus a subproblem solution for i — 1 items and the weight
excluding w;, or doesn’t include item 7, in which case it is a subproblem solution
for i — 1 items and the same weight. That is, if the thief picks item i, he takes y

value, and he can choose from items 1,...,i — 1 up to the weight limit w — w,
and get c[i — 1, w — w;] additional value. On the other hand, if he decides not to
take item i, he can choose from items 1,...,i — 1 up to the weight limit w, and

get c[i — 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weight W, the number of items #, and
the two sequences v = (vy, vy, ..., V,) and w = (wy, wy, ..., wy). It stores the
cli, j] values in a table ¢[0..n,0.. W] whose entries are computed in row-major
order. (That is, the first row of c is filled in from left to right, then the second row,
and so on.) At the end of the computation, c[n, W] contains the maximum value
the thief can take.

16-12

Solutions for Chapter 16: Greedy Algorithms

DYNAMIC-0-1-KNAPSACK (v, w, n, W)
for w < Oto W
do c[0, w] < 0
fori < 1ton
do c[i,0] <O
forw < 1toW
do if w;, < w
thenifv, +c[i — 1, w —w;] > c[i — 1, w]
then c[i, w] < v; +c[i — 1, w — w;]
else c[i,w] < c[i — 1, w]
else c[i, w] < c[i — 1, w]

The set of items to take can be deduced from the c table by starting at c[n, W] and
tracing where the optimal values came from. If c[i, w] = c[i — 1, w], then item i is
not part of the solution, and we continue tracing with c[i — 1, w]. Otherwise item i
is part of the solution, and we continue tracing with c[i — 1, w — w].

The above algorithm takes ® (n W) time total:

+ ©®mW)tofillin the c table: (n+ 1) - (W + 1) entries, each requiring ® (1) time
to compute.

* O(n) time to trace the solution (since it starts in row n of the table and moves
up one row at each step).

Solution to Exercise 16.2-4

The optimal strategy is the obvious greedy one. Starting will a full tank of gas,
Professor Midas should go to the farthest gas station he can get to within n miles
of Newark. Fill up there. Then go to the farthest gas station he can get to within n
miles of where he filled up, and fill up there, and so on.

Looked at another way, at each gas station, Professor Midas should check whether
he can make it to the next gas station without stopping at this one. If he can, skip
this one. If he cannot, then fill up. Professor Midas doesn’t need to know how
much gas he has or how far the next station is to implement this approach, since at
each fillup, he can determine which is the next station at which he’ll need to stop.

This problem has optimal substructure. Suppose there are m possible gas stations.
Consider an optimal solution with s stations and whose first stop is at the kth gas
station. Then the rest of the optimal solution must be an optimal solution to the
subproblem of the remaining m — k stations. Otherwise, if there were a better
solution to the subproblem, i.e., one with fewer than s — 1 stops, we could use it to
come up with a solution with fewer than s stops for the full problem, contradicting
our supposition of optimality.

This problem also has the greedy-choice property. Suppose there are k gas stations
beyond the start that are within n miles of the start. The greedy solution chooses
the kth station as its first stop. No station beyond the kth works as a first stop,
since Professor Midas runs out of gas first. If a solution chooses a station j < k as

