
Avoid Inheritance if you can
A discussion of the problems with using inheritance in OO design
(And why you'd better avoid using it)

What is inheritance

Inheri tance

Realization Extension Code Reuse Documentat ion

2

What is inheritance
Realization

Declare conformance of an implementation to an interface
Abstraction/Polymorphism

Class to interface

Extension
Publicly declare covariant compatibility of two types

Interface to interface (but also class, since classes are interfaces too)

Code reuse
Inherit methods from the parent class

Class to class

Documentation
Establish an organization of types

Create a strong conceptual relation between types, like Father and Son

3

What inheritance is not
Only one of these things.

Inheritance does not allow you to get one without the others

Why is this problematic?

Sometimes one of these is not necessary
You pay the cost of all of these things even if you just need one

It makes your code harder to modify or read

Sometimes one of these does not apply (in particular compatibility and hierarchy)
We are constraint to preserve the compatibility of types even if it is not perfect

It makes your code harder to modify or read

We are confused by why two unrelated concepts inherit from each other
It makes your code harder to modify or read

4

Example 1: Inheritance for polymorphism
interface Drawable {
 void Draw(Surface s);
}
class Line implements Drawable {
 int x1; int x2; int y1; int y2;
 void Draw(Surface s) { ... }
}
class Image implements Drawable {
 void Draw(Surface s) { ... }
}
class Scene {
 List<Drawable> objects;
 void RenderScene(Surface s) {
 s.Clear();
 for (Drawable d : objects) {
 d.Draw(s);
 }
 }
}

5

Example 2: Inheritance as code reuse
class Rectangle extends Line {
 // we recycle the x1,x2,y1,y2 fields and their getter/setter to act as
 // top-left/bottom-right. I'm so smart

 // Override this to change behavior (draw a rectangle instead of a line)
 void Draw() { ... }
}

6

Example 3: Inheritance as extension
interface VectorDrawable extends Drawable {
 void DrawVector(VectorSurface s);
}

class Shape implements VectorDrawable {
 void Draw(Surface s) { ... }
 void DrawVector(VectorSurface s) { ... }
}
// change Line to also implement VectorDrawable since now
// we support vector graphics as well
class Line implements VectorDrawable {
 ...
 void DrawVector(VectorSurface s) { ... }
}

7

Then chaos ensues
Describe the bug
Rectangles are not being drawn correctly when using a vector surface

Expected behavior
When drawing to a vector surface rectangles are drawn as a diagonal line

8

Why went wrong?
Rectangle is not a specialization of Line , as it cannot be used as a line

(Liskov's substitution principle), but reusing code from Line to Rectangle makes
perfect sense.

Allowing Line to be extended makes further specifying its public interface (adding
methods or interfaces) an illegal modification violating OCP.
Simply adding a method can create conflict with child classes by either:

being overridden by a method that does not respect the semantics of the
parent class method

exposing the state of the parent class that was overridden by the subclass

Although VectorDrawable looks like it should intuitively extend Drawable there is
no advantage in doing that. On the contrary, this means that clients that depend
on VectorDrawable will also be having dependence on Drawable implicitly even if
they don't use any of the Drawable methods. This is a violation of the ISP

9

How can we do better?
Avoid extending classes.

Use some other method for code reuse (see later).

Avoid using classes as types.
classes should only depend on interfaces

only use the class name when you are calling a constructor or static method

the missing methods of a class should be considered part of the contract

Avoid extending interfaces
while this sounds fine in theory, in practice you are creating a bigger interface
with no reason

Use languages that have an explicit interface implementation and require explicit
interface casting to use interface method (e.g. F#)

10

type IPrintable =
 abstract member Print: unit -> unit

type SomeClass1(x: int, y: float) =
 interface IPrintable with
 member this.Print() = ...
 member this.Preview () = ...

If the interface changes we get a compiler error instead of silently using the declared
method

type IPrintable =
 abstract member Print: unit -> unit
 abstract member Preview: unit -> unit

11

Example 4: Inheritance as documentation
interface Animal { ... }

interface FlyingAnimal extends Animal {
 void fly();
}

class Bird implements Flyer {
 ...
 void fly() {
 ...
 }
}

class Swallow extends Bird {
 ...
}

12

Welcome penguins:
class Penguin extends Bird {
 void fly() {
 throw new SorryNotSorryException()
 }
}

13

What went wrong here
We tried to reproduce a real-world classification in our type hierarchy.
This is dangerous because:

Real-world "is a" is a lot less strict than Liskov's substitution principle
it has a lot of exception

it can be not transitive

sometimes it goes in the opposite direction

Even if the substitution principle may hold at a certain point (because we are using
a simplified model of the business) this may not hold anymore in the future once
we refine our model.

The hierarchy above would be fine if the "Flyer" interface had only methods for
getting wing information

14

How can we do better
Avoid using inheritance between classes/interfaces that represent real-world
objects.

Use modules/namespaces/files and folders to organize code instead of class
hierarchy

15

In conclusion
Implementing interfaces is OK and is necessary for dependency inversion and
polymorphism.

Use generic programming if available and polymorphism is parametric (e.g.
containers)

Extending interfaces may be ok sometimes to imply compatibility (for example, if
you want to express that V2 of an interface is compatible with V1), but beware of
growing interfaces too much (in particular, you won't be able to understand if
clients of V100 still needs methods from V1). Inheritance can't be broken as it is
part of the public interface.
Do not introduce subtype relations just because something "should-be" something
else. Wait for a practical reason. Do not implement interfaces that you do not need
yet.

Avoid inheritance as a code reuse mechanism
Prefer composition (see below)
Split behavior into multiple small interfaces to allow implementing them into
multiple unrelated small classes

16

Composition over inheritance
Inheriting from a parent class is not required to use its code.
More often than not you can get away with just holding a reference to an instance of
that class ("has-a" relation rather than "is-a").

Advantages of composition over inheritance:

Dependence between classes can be abstracted with an interface, inheritance
requires a specific instance. This helps in testing for example as with other reasons
DIP exists.

Favors code splitting and reusing because a class can depend on multiple other
classes (but can only inherit one)

Makes the dependency an implementation detail rather than a part of the public
interface (which allows changing/removing it later)

Allow changing dependencies later in the instance lifetime, while the instance of
the base class is fixed at construction time

17

Composition patterns: delegation
A class A implements an interface B by delegating all method calls for that interface
to a member instance that implements B , called the delegate.
Delegation happens by writing stubs of the methods that forward the call to the
delegate.
This can be very verbose, but some languages such as Kotlin have a specific syntax for it

18

Delegation example (Classic Java 1/2)
interface ClosedShape {
 int area();
}

class Rectangle implements ClosedShape {
 ...
 public int area() {
 ...
 }
}

19

Delegation example (Classic Java 2/2)
class Square implements ClosedShape {
 private Rectangle rectangle;

 public Square(int side) {
 this.rectangle = new Rectangle(side, side);
 }

 public int area() {
 return rectangle.area();
 }
}

20

Delegation example (Kotlin)
interface ClosedShape {
 fun area(): Int
}

class Rectangle(...) : ClosedShape {
 override fun area() = ...
}

class Square(private val side: Int) : ClosedShape by rectangle {
 private val rectangle = Rectangle(side, side)
}

21

Delegation example (Java with default 1/2)

interface ClosedShape {
 default int area() {
 return delegate.area();
 };
 ClosedShape delegate();
}

class Rectangle implements ClosedShape {
 ...
 public int area() {
 ...
 }
 public ClosedShape delegate() {
 return null;
 }
}

22

Delegation example (Java with default 2/2)

class Square implements ClosedShape {
 private Rectangle rectangle;

 public Square(int side) {
 this.rectangle = new Rectangle(side, side);
 }

 public ClosedShape delegate() {
 return this.rectangle;
 }
}

23

Composition patterns: Strategy
Similar to the Delegation pattern, but the delegate is polymorphic and is provided
externally (and can be switched at runtime).

This is mostly used to configure behavior dynamically, or to switch behavior after some
state transition of the object (State pattern)

24

Strategy example 1/2
class Person { ... }

class CompareByAge implements Comparator<Person> {
 public int compare(Person p1, Person p2) {
 return Integer.compare(p1.getAge(), p2.getAge());
 }
}

class CompareByName implements Comparator<Person> {
 public int compare(Person p1, Person p2) {
 return p1.getName().compareTo(p2.getName());
 }
}

25

Strategy example 2/2
class PersonSorter {
 private Comparator<Person> strategy;

 public PersonSorter(Comparator<Person> strategy) {
 this.strategy = strategy;
 }

 public void setStrategy(Comparator<Person> strategy) {
 this.strategy = strategy;
 }

 public void sort(Person[] people) {
 Arrays.sort(people, strategy);
 }
}

26

Questions?

27

SOLID (the easy part)

Single Responsibility Principle (SRP)

A class should have only one reason to change.
Divide functionality that can change for different reasons

A modification should affect only one module.
Group together functionality that changes together

28

SOLID (the easy part)

Interface Segregation Principle (ISP)

Interfaces should be minimal and defined on the requirements of the dependent
Interfaces are tightly coupled with the class that depends on them
and change with it

Dependency Inversion Principle (DIP)

Classes only know each other through the interfaces they implement
Interface is a "contract" between implementer and user
that guarantees freedom of action to both

29

SOLID (the hard part)

Open-Closed Principle (OCP)

Open: I can add functionality to a module/interface

Closed: provided that I guarantee the constraints of the original module for users

Liskov Substitution Principle (LSP)

Subtype relationship is a subset relationship
The subtype must guarantee all the properties of the type from which it derives:
if extends then

30

