Tecniche di
Progettazione:
Design Patterns

Laura Semini, Universita di Pisa, Dipartimento di Informatica.

e "'

n;i L T e
m’ - . \- " ..?.

auhiedi
R e

BT \ll’m‘

sy)y 11 i\ \ ‘

l l ””“ ﬂl‘

-

......

ATTENTION

BAD DESIGN
| “CALATRAVA BRIDGE” |
e E . N

Pattern: the step

The rise is typically between 13 and 20 cm

The run is calculated using:

Blondel formula: 2Raise + Run=62 + 64 cm

By varying the slope, the user tends to change the length of the
step so that the work done to overcome a step is equal to the
work done to accomplish the same step on a plane.

Blondel formula: 2Raise + Run=62 + 64 cm

= ' .
Run= 50, Raise =8 2> 50+2x8=66

sy A

l i A
-
g7 LR ".~ ' -6-
X

—

<
e

6 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Calatrava: no space to rest

WOk A

LR

Materials

The use of Istrian stone alternated with dark trachyte to mark the
step is a good solution already identified by the Venetians in the
fifteenth century.

Where is the step?

So what?

There are a set of practical rules the designer

can follow to build a staircase:
- Rise/run ratio (Blondel)
- Materials...

These practical rules are the design patterns.

They are defined out of centuries of experience.

What is a (Design) Pattern?

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever

doing it the same way twice”

Christopher Alexander

. Who's Who i AR) Christopher Alexander 1s
Christo P her Alexander Archives 2R Professor in the Graduate
m - School and Emeritus
A Pattern Language, 1977 P'iintincw- > ; Professor of Architecture
C 110 k

f lcade at the University of

Books " Bowsal California, Berkeley.

Film 4 gty

C Vitae " 0 g, af He is the father of the
. ; W @ Pattern Language

Computing ' L A ' movement in computer

Wiki RS R W science, and A Pattern
\ - ! 3

Software) " Language, a seminal work
Patterns tha s perhaps the first

Design is not only a creative process

Carlo Scarpa told to a young architect:

“Read a hundred pages of architecture per day”

Design Patterns

Elements of Reusable
Objecl-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

?

41435 DONILIWOD TVNOISSTION A3TSIM NOSIady

A Brain-Friendly Guide

Head First

[S 2 B]

Design Patterns

In che fase si applicano

analysis

}=~;

design

}=~;

Architetural
Detailed

implementation

-=1

e coding

e unit testing
e integration
e system
testing

maintenance

GoF Design Patterns

Sono 23 design pattern suddivisi in base al loro scopo

Creazionali:
propongono soluzioni per creare oggetti

Comportamentali:

propongono soluzioni per gestire il modo in cui vengono suddivise
le responsabilita delle classi e degli oggetti

Strutturali:

propongono soluzioni per la composizione strutturale di classi e
oggetti

Why Patterns in software?

= "Designing object-oriented software is hard and
designing reusable object-oriented software is even
harder."
= - Erich Gamma
= Experienced designers reuse solutions that have
worked in the past.

« Well-structured object-oriented systems have
recurring patterns of classes and objects

= Knowledge of the patterns that have worked in the
past allows a designer to be more productive and the
resulting designs to be more flexible and reusable

Software Patterns History

= 1987 - Cunningham and Beck used Alexander’s ideas to develop
a small pattern language for Smalltalk

= 1990 - The Gang of Four (Gamma, Helm, Johnson & Vlissides)
begin compiling a catalog of design patterns

= 1991 - First Patterns Workshop at OOPSLA

= 1993 - Kent Beck and Grady Booch sponsor the first meeting of
what is now known as the Hillside Group

= 1994 — 1%t Pattern Languages of Programs (PLoP) conf.
= 1995 - The Gang of Four (GoF) Design Patterns book

Design Pattern Levels Of Abstraction

Complex design for an entire

application or subsystem
More Abstract

Solution to a general design
problem in a particular context

Simple reusable design class
such as a linked list, hash table, More Concrete

etc.

Architecture-Design-Code

Architectural Design Patterns

Design Patterns

ldioms o Coding Design Patterns

Architecture-Designh-Code

Architectural Design Patterns
> Thay address the architecture of a sw system
- E.g. Layers, Pipes and Filters, Publish-Subsribe, Model-View-Controller, ...

analysis 1 —n
design 1 E—

Architetural implementation || —
Detailed i 1

e coding maintenance

e unit testing '
e integration
e system testing

Architecture-Design-Code

Design Patterns
o They address the design and refinement of components.
o E.g. abstract factory, decorator, ...

analysis 1 —n
design 1 E—

Architetural implementation || —
Detailed i

e coding maintenance

e unit testing '
e integration
e system testing

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di

Informatica.

Architecture-Design-Code

Idioms o Coding Patterns
> Low-level patterns specific to a programming language.
> An Idiom is more restricted than a design pattern
- Still describes a recurring problem
- Provides a more specific solution, with fewer variations
- Applies only to a narrow context
- e.g., the C++ language
- E.g. Naming conventions, Source code formats, Memory management...

I design :
IArchitetural implementation =""

Detailed 1 -‘

« coding maintenance
¢ unit testing 1
¢ integration

e system testing

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di

Informatica.

Best known families of patterns

GRASP

> General Responsibility Assignment Software Patterns (or Principles) [Graig Larman]

> Information Expert, Creator, Controller, Low Coupling, High Cohesion, Polymorphism,
Pure Fabrication, Indirection, Protected Variations

SOLID

- Single responsibility, Open-closed, Liskov substitution, Interface segregation and
Dependency inversion

GoF

> 23 design patterns
POSA

> A System of Patterns: Pattern-Oriented Software Architecture
> Volumes 1—5

GoF Design Patterns

The GoF design patterns are in the middle of
these levels of abstraction

“A design pattern names, abstracts, and
identifies key aspects of a common design
structure that makes it useful for creating a
reusable object-oriented design.”

The GoF design patterns are “descriptions of
communicating objects and classes that are
customized to solve a general design problem in
a particular context.”

GoF Classification Of Design Patterns

Purpose - what a pattern does

Creational Patterns
Concern the process of object creation
- Abstract Factory, Builder, Factory Method, Prototype, Singleton.
- Structural Patterns
Deal with the composition of classes and objects
- Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.
Behavioral Patterns

Deal with the interaction of classes and objects

Chain of responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Observer, State, Strategy, Template, Visitor.

GoF Pattern Template

Pattern Name and Classification
- A good, concise name for the pattern and the pattern's type

Intent
> Short statement about what the pattern does

Also Known As
> Other names for the pattern

Motivation
> A scenario that illustrates where the pattern would be useful

Applicability

> Situations where the pattern can be used

GoF Pattern Template (Continued)

Structure
> A graphical representation of the pattern

Participants
> The classes and objects participating in the pattern

Collaborations
- How to do the participants interact to carry out their responsibilities?

Consequences
> What are the pros and cons of using the pattern?

Implementation
> Hints and techniques for implementing the pattern

GoF Pattern Template (Continued)

Sample Code

- Code fragments for a sample implementation

Known Uses
- Examples of the pattern in real systems

Related Patterns
- Other patterns that are closely related to the pattern

GoF Notation

The GoF book uses the Object Modeling Technique (OMT)
notation for class and object diagrams

/N Generalization J Inheritance List
$ Class operation / Class attribute add(Object) - void
itafic Abstract class/ Abstract operation inzeri(int, Objact) * void
Association f Link getfint) - Objsct
Multiplicity : one
getsEe() - int

——@ Multiplicity : many

%> Aggregation

——{y Multiplicity : optional)\

—([>next LinkedList ArrayList

L Entry size . int=0 elements : Array
$MAX_SIZE int= 100 - -

header add{Object) : void
next . Entry

add{Object) | void insert{int, Ohject) : void
insertfint, Object) : void get(int) : Object
get(int) : Object getSizel) | int
getSizel) int F listToArray(List) © Array

Object <%

Head first uses UML

