
1

Laura Semini, Ingegneria del Software

Dipartimento di Informatica, Università di Pisa

Ingegneria del Software

Strategy pattern: the duck

2

Ingegneria del Software

Strategy pattern: the duck

3

Ingegneria del Software

The rubber duck

4

Ingegneria del Software

First solution: override

Override fly()

Class Rubberduck{

fly() {

\\ do nothing

}

quack(){

\\ override to squeak

}

}

5

PROBLEM:
subclassing when only part of the
behaviour is inherited

All time a new duck is added, the
designer has to check if methods
fly and quack have to be overiden

Ingegneria del Software

Second solution: interfaces

6

Ingegneria del Software

7

Ingegneria del Software

8

Ingegneria del Software

Strategy

9

Ingegneria del Software

Recall some OO design principles

“Identify what vary and encapsulate them, so
that later you can alter or extend the parts that
vary without affecting those that don’t”;

“Program to an interface, not an
implementation”;

“Favor composition over inheritance”.

10

Ingegneria del Software

Strategy

Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

A program may have to supply several variations of an
algorithm or of a behaviour.

Solution:
◦ These variations are encapsulated in separate classes
◦ There is a uniform access to them

11

Ingegneria del Software

Strategy: structure

12

Ingegneria del Software

Strategy: participants

Strategy
◦ Defines an interface common to all supported algorithms

ConcreteStrategy
◦ Each concrete strategy implements an algorithm

Context
◦ Contains a reference to a strategy object (with type

Strategy)
◦ May define an interface that lets strategy access its data.

(Instead of passing them as arguments when calling the strategy
methods)

13

Ingegneria del Software

Ducks example

14

context

strategy

strategy

concrete strategy

concrete strategy

Ingegneria del Software

Example

The MyArray class represents vectors of numbers

One of its methods print the array, in two formats:
◦ MathFormat (es. {12, -7, 3, ...})
◦ StandardFormat (es. ar[0]_12, ar[1]_-7, ar[2]_3, …)

In the future these formats may be substituted by different
ones….

Problem:
◦ How to isolate the algorithm used to format the array contents, so

that it can vary independently of the other methods of the class?

15

Ingegneria del Software

Solution

16

Ingegneria del Software

Context

17

Ingegneria del Software

The interface (strategy)

18

Ingegneria del Software

First concrete startegy

19

Ingegneria del Software

Second concrete startegy

20

Ingegneria del Software

The client

È il cliente che crea e passa un oggetto CongreteStrategy al Context

Da quel momento interagisce solo con Context

21

Ingegneria del Software

The result

22

Ingegneria del Software

Applicability

Use the Strategy pattern whenever:

◦ Many related classes differ only in their behavior

◦ You need different variants of an algorithm

◦ An algorithm uses data that clients shouldn't know about.

◦ Use the Strategy pattern to avoid exposing complex,
algorithm-specific data structures.

◦ A class defines many behaviors, and these appear as
multiple conditional statements in its operations. Instead of
many conditionals, move related conditional branches into
their own Strategy class.

23

Ingegneria del Software

Discussion

Benefits
◦ Provides an alternative to subclassing the Context class to

get a variety of algorithms or behaviors
◦ Eliminates large conditional statements
◦ Provides a choice of implementations for the same behavior

Liabilities
◦ Increases the number of objects
◦ All algorithms must use the same Strategy interface

24

Ingegneria del Software

Discussion (cont’d)

Different ConcreteStrategy may need different data.
Most probably some ConcreteStrategy will not use all
the data passed through the generic interface

◦ Hence: the context create and initializes parameters that will
never be used by anybody

◦ When this is a problem:
◦ stronger coupling between ConcreteStrategy and

Context
◦ the former accessing the latter to ask for the data it

needs

25

Ingegneria del Software

Strategy Pattern Example: SORT

Problem:
◦ A class wants to decide at run-time what algorithm it should use to sort an array.

Many different sort algorithms are already available.

Solution
◦ Encapsulate the different sort algorithms using the Strategy pattern

26

Ingegneria del Software

Strategy Pattern Example: GUI

A GUI text component object wants to decide at runtime what strategy it
should use to validate user input. Many different validation strategies are
possible: numeric fields, alphanumeric fields, telephone-number fields, etc.

Solution
◦ Encapsulate the different input validation strategies using the Strategy pattern

This is the technique used by the Java Swing GUI text components. Every
text component has a reference to a document model which provides
the required user input validation strategy.

27

Ingegneria del Software

Homework: design and code

PizzaCap is a company that sells pizzas and offres discounts to
clients.

There are many kinds of discount calculation methods such as: 10%
off, reduce 5$ each 20$ spent, 3 pizzas at the price of 2, 20%
discount on pepperoni pizza.

Now PizzaCap asks you to develop a sales management system,
they want you to design a schema to calculate the discount when
selling pizzas. Your design should be capable of selecting the
discount calculation methods. Also, when PizzaCap needs new
discount calculation methods or wants to modify old ones, it must
be very easy to implement the changes without affecting the
existing system.

Discuss the issue with the data passed. What happens with
"reduce 5$ on any purchase”? or “reduce 5$ on first purchase”?

28

