GoF Design
Patterns: Startegy

Laura Semini, Ingegneria del Software

Dipartimento di Informatica, Universita di Pisa

UNIVERSITA DI P1SA

Strategy pattern: the duck

Duck

Strategy pattern: the duck

—

Duck

- o

MallardDuck W RedheadDuck Lots of other types
/ 4

of ducks

The rubber duck

Duck

Yay!! | can fly
too!!!

=T

MallardDuck RedheadDuck ¢

RubberDuck 1

First solution: override

Override fly() PROBLEM:
subclassing when only part of the

behaviour is inherited
Class Rubberduck{

fly() { All time a new duck is added, the
designer has to check if methods

do nothi
\\ do nothing fly and quack have to be overiden

}

quack(){
\\ override to squeak

)

Second solution: interfaces

<<|nterfaces>> !l!

They can't see
Yes!ll That's it! | make an IFlyable interface and me happy &
RubberDuck doesn't get to implement it...

=]

MallardDuck RedheadDuck RubberDuck 1 -
L

| thought she was non-technical...

+ Well here is my situation

* | can't put the fly() method in the base class

» If I use interface, | can't reuse code

» Alright, so this calls for a dependency split

* Flying is a behavior and should be separate from the Duck object
» Flying behaviors could be reused on different objects

» Different ducks could fly in different ways

Strategy

Duck

MallardDuck RubberDuck

Recall some OO design principles

“Ildentify what vary and encapsulate them, so
that later you can alter or extend the parts that
vary without affecting those that don’t”;

“Program to an interface, not an
implementation”;

“Favor composition over inheritance”.

Strategy

Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

A program may have to supply several variations of an
algorithm or of a behaviour.

Solution:
These variations are encapsulated in separate classes
There is a uniform access to them

Strategy: structure

at some point |, strategy.algorithminterface

Context

Strateqy

|
|
|
|
" +contextinte rfacel: BHEEgY

+glgorithminteface().

ConcreteStrat1 ConcreteStrat?

+algarithminterfaced: +algorithminterface:

Strategy: participants

Strategy

Defines an interface common to all supported algorithms

ConcreteStrategy

Each concrete strategy implements an algorithm

Context

Contains a reference to a strategy object (with type
Strategy)

May define an interface that lets strategy access its data.

(Instead of passing them as arguments when calling the strategy
methods)

Ducks example

Client makes use of an Encapsulated fly behavior
Cr\ca?sula{xd I‘camil\f of ale-orl{',hms e Strateg.y
for both Fl‘jm‘b and quatking, |_— [ok eath
T\\\t\k o VoY
context i L ok et A
Client ¢ o d¢oncrefe Strategy SEC 0wl 0
FlyBehavior fiyBehavior Fly WithWings Pty as 2 3
QuackBehavior quackB ehavior v {) { 3\%0‘-‘
o) Il implaments duck flying //do noting - can't fiy!
dispiy(L * e
parfamQuack()
pearfarmFiy()
seff lyBehawvior() ™
sefQuacBetavior()
¥ OTHER duck-ike mathods. ..

quack()

Encapsulated quack behavior
\ o jStrategy

MallardDuck :

display() {
Illooks ke a maltard }

RedheadDuck

display() {
I locks ke a redhead }

RubberDuck | DecoyDuck

dsgay() { display() {
¥ hooks ke a rubberduck } I ocks Be a decoy duck)

Quack

Squeak
quack()
rubber duckde squeak

}

concrete strategy

MuteQuack
quac) {
/I do nothing - canl quack!
}

quack) {
I mgiements duck quacking

}

Example

The MyArray class represents vectors of numbers

One of its methods print the array, in two formats:
o MathFormat (es. {12, -7, 3, ...})
o StandardFormat (es. ar[0] 12, ar[1] -7, ar[2] 3, ...)

In the future these formats may be substituted by different
ones....

Problem:

- How to isolate the algorithm used to format the array contents, so
that it can vary independently of the other methods of the class?

Solution

MyArray

-array :int[] <>

+setValue(pos:int, valueint): void
+getValue(int pos)int

+setDisplayFormat (adf: ArrayDisplayFormat)
+display()

display() {
format.printData(array);
}

b — o — e — e — e —

ArrayDisplayFormat

— {interface)

+printData(aray: intf])

W/*’ X

StandardFormat MathFormat

setDisplayFormat(ArrayDisplayFormat adf) {
format = adf;

}

+printData(array: int[]) =printData(array: int[])

LOTNLeExXL

PpPublic class MyArrxray {

private int[] array;
41 i slxos
ArrayDisplayFormat format;

Ppublic MyArray(int size) {
array = new int([size];7
}

public void setValue(int pos, int wvalue) {
array[(pos] = value;

}

public int getValue (int pos) {
return arrayl[po=s];

}

public int getLength(int pos) (
return array.length;

}

Public void setDisplayFormat{(ArrayDisplayFormat adf) ({
format = adf;
}

public void displavy () ({
format.printData(array)i
}

The interface (strategy)

public interface ArrayDisplayFormat (

public void printData(int[] arr);

First concrete startegy

public class EtandardFormat implements ArrayDisplayFormat |

public void printData{ int[] arr) {
System.out.print{ "{ ™);
for{int 1=0; i < arr.length-1 ; 1i++)
System.out.print{ arr[i] + ™, ™);
System.out.println{ arr[arr.length-1] + ™ }"™ };

Second concrete startegy

public class MathFormat implements ArrayDisplayFormat |

public void printData{ int[] arr) {
for{int i1=0; i « arr.length ; i++)
system.ount.println{ "Arr[® + 1 + ™ | = " + arr[i] 1§

The client

public class StrategyExample |
public static woid maln (String[] arg) {

MyLhrray m = new MyArray({ 10 };
m.setWValue{ 1 , & };
m.setValue{ 0 , 8B);
m.setValue{ 4 , 1 };
m.setValue{ 9 , T);
System.out.println("This is the array in fstandard® format"):
m. setDisplayFormat { new StandardFormat ());
m.display {();:
System.out.println{®"This is the array in 'math’' format:");
m. setDisplayFormat { new MathFormat () });
m.display {);
]

The result

C: “Design Patterns\Behavioral\Strategy>java StrategyExample

This is the array in ’standard’ format
{ 8 6, 0, 0, 1, 0, O, O, O, 7}

This is the array in "math” format:
Arr|
Arr|
Arr|
Arr|
Arr|
Arr|
Arr|
Arr|
Arr|
Arr|

[v R I o T 3 Y S % O % I i e
Il
S I [o I v e T R e T e Y T

e e e b el b bl e e]

Applicability

Use the Strategy pattern whenever:
Many related classes differ only in their behavior
You need different variants of an algorithm
An algorithm uses data that clients shouldn't know about.

Use the Strategy pattern to avoid exposing complex,
algorithm-specific data structures.

A class defines many behaviors, and these appear as
multiple conditional statements in its operations. Instead of
many conditionals, move related conditional branches into

their own Strategy class.

Discussion

Benefits
Provides an alternative to subclassing the Context class to
get a variety of algorithms or behaviors
Eliminates large conditional statements
Provides a choice of implementations for the same behavior

Liabilities
Increases the number of objects
All algorithms must use the same Strategy interface

Discussion (cont’d)

Different ConcreteStrategy may need different data.

Most probably some ConcreteStrategy will not use all
the data passed through the generic interface

Hence: the context create and initializes parameters that will
never be used by anybody

- When this is a problem:

- stronger coupling between ConcreteStrategy and
Context

- the former accessing the latter to ask for the data it
needs

Strategy Pattern Example: SORT

Problem:

o A class wants to decide at run-time what algorithm it should use to sort an array.
Many different sort algorithms are already available.

Solution
o Encapsulate the different sort algorithms using the Strategy pattern

— -

SortArray SortStrategy
sortStrategy
sort() sort()
BubbleSort QuickSort InsertionSort
sort() sort() sort()

Strategy Pattern Example: GUI

A GUI text component object wants to decide at runtime what strategy it
should use to validate user input. Many different validation strategies are
possible: numeric fields, alphanumeric fields, telephone-number fields, etc.

Solution
° Encapsulate the different input validation strategies using the Strategy pattern

This is the technique used by the Java Swing GUI text components. Every
text component has a reference to a document model which provides
the required user input validation strategy.

TextComponent validator Validator
e
Numeric Alphanumeric TelNumber

Homework: design and code

PizzaCap is a company that sells pizzas and offres discounts to
clients.

There are many kinds of discount calculation methods such as: 10%
off, reduce 5S each 20S spent, 3 pizzas at the price of 2, 20%
discount on pepperoni pizza.

Now PizzaCap asks you to develop a sales management system,
they want you to design a schema to calculate the discount when
selling pizzas. Your design should be capable of selecting the
discount calculation methods. Also, when PizzaCap needs new
discount calculation methods or wants to modify old ones, it must
be very easy to implement the changes without affecting the
existing system.

Discuss the issue with the data passed. What happens with
"reduce 55 on any purchase”? or “reduce 5$ on first purchase”?

