
Design Patterns:
Decorator

Ingegneria del Software

An example

2

Ingegneria del Software

https://www.youtube.com/watch?v=tzQuuoKXVq0

https://www.youtube.com/watch?v=v-jIvacpsxI

3

Ingegneria del Software

Your first idea of implementation

4

Ingegneria del Software

In reality

5

Ingegneria del Software

Now a beverage can be mixed from different condiment to form a new
beverage

6

Ingegneria del Software

7

Ingegneria del Software

8

Ingegneria del Software

Now, your turns. It is a good solution?

9

Ingegneria del Software

Design patterns, Laura Semini, Università di Pisa, Dipartimento di
Informatica.

10

Ingegneria del Software

Open Closed Principle

SOLID 2: Open Closed Principle :
◦ Extending a class shouldn't require modification of that class.
◦ Software entities like classes, modules and functions should be open for extension but closed

for modifications.
◦ OPC is a generic principle. You can consider it when writing your classes to make sure that when you need to extend

their behavior you don’t have to change the class but to extend it. The same principle can be applied for modules,
packages, libraries.

11

Ingegneria del Software

12

Ingegneria del Software

Decorator Pattern

The problems of two previous designs
◦ we get class explosions, rigid designs,
◦ or we add functionality to the base class that isn’t

appropriate for some of the subclasses.

13

Ingegneria del Software

Revisit the problem again

If a customer wants a Dark Roast with Mocha and
Whip
◦ Take a DarkRoast object
◦ Decorate it with a Mocha object
◦ Decorate it with a Whip object
◦ Call the cost() method and rely on delegation to add on the

condiment costs

14

Ingegneria del Software

Constructing a drink order with
Decorators

15

Ingegneria del Software

16

Ingegneria del Software

Ingegneria del Software

18

Ingegneria del Software

The decorator pattern for Starbuzz beverages

19

Ingegneria del Software

Decorator Pattern defined

20

Ingegneria del Software

Decorator: participants

 Component
 Interface of the decorated objects

 ConcreteComponent
 Base class of objects that can receive new responsibilities

 Decorator
 Defines an interface conform to the common one and maintains a

reference to one object of type component (it can be already decorated
or not)

 ConcreteDecorator
 Defines a new responsibility

21

Ingegneria del Software

22

Ingegneria del Software

23

Ingegneria del Software

Let’s see the code

24

Ingegneria del Software

The abstract class of condiments

25

Ingegneria del Software

Concrete Base Classes of Beverages

26

Ingegneria del Software

A concrete Condiment class

27

When
Mocha
price

changed,
we only
need to
change

this

Ingegneria del Software

Constructing new beverages from
decorator classes dynamically

28

Ingegneria del Software

Be careful !

You can usually insert decorators transparently and the client never has to
know it’s dealing with a decorator

However, if you write some code is dependent on specific types -> Bad things
happen

29

Beverage beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);
System.out.println(beverage2.getDescriptio
n()
+ “ $” + beverage2.cost());

Beverage beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
Whip beverage3 = new Whip(beverage2);
System.out.println(beverage3.getDescripti
on()
+ “ $” + beverage2.cost());

The right way The poor way

Ingegneria del Software

30

Ingegneria del Software

Decorator: Good Consequences

More Flexibility than static inheritance
◦ Much easier to use than multiple inheritance
◦ Can be used to mix and match features
◦ Can add the same property twice
◦ Allows to easily add new features incrementally

31

Ingegneria del Software

Decorator: Bad Consequences

 If Decorator is complex, it becomes costly to use in
quantity

 A decorator and its component aren’t identical
 From an object identity point of view, a decorated

component is not identical to the component itself
 Don’t rely on object identity when using decorators

 Lots of little objects
◦ Often end up with systems composed of lots of

little objects
◦ Can be hard to learn and debug

32

Ingegneria del Software

Implementation Issues

Several issues should be considered when applying the
Decorator pattern:
1. Interface conformance:

A decorator object’s interface must conform to the interface
of the component it decorates.

2. Omitting the abstract Decorator class:
If only one responsibility is needed, don’t define abstract
Decorator. Merge Decorator’s responsibility into the
ConcreteDecorator.

33

Ingegneria del Software

Implementation Issues

3. Keeping Component classes light weight:
The Component class is inherited by components and
decorators. Component class should be dedicated to defining
an interface, no other functions. E.g.The Component class
should not be used for storing data and defining data. That
should be done in subclasses. If the Component class
becomes complex, it might make the decorators too
heavyweight and costly to use in quantities. Keep it light and
simple.

4. Changing the skin of an object versus its guts:
Decorator classes should act as a layer of skin over an object.
If there’s a need to change the object’s guts, use Strategy
pattern.

34

Ingegneria del Software

Decorator

Intent
◦ Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for
extending functionality.

Also Known As
◦ Wrapper

Motivation
◦ We want to add properties, such as borders or scrollbars to a

GUI component. We can do this with inheritance
(subclassing), but this limits our flexibility. A better way is to
use composition!

35

Ingegneria del Software

Structure: the TextView example

36

Ingegneria del Software

Motivation

37

Ingegneria del Software

Motivation for the Decorator pattern
in a little more detail.

Suppose we have a TextView GUI component and we want to
add different kinds of borders and scrollbars to it.
Suppose we have three types of borders:
◦ Plain, 3D, Fancy

And two types of scrollbars:
◦ Horizontal, Vertical

Solution 1: Let’s use inheritance first. We’ll generate subclasses
of TextView for all the required cases. We’ll need the 15
subclasses:

38

TextView-Plain

TextView-Fancy

TextView-3D

TextView-Horizontal

TextView-Vertical

TextView-Horizontal-Vertical

TextView-Plain-Horizontal

TextView-Plain-Vertical

TextView-Plain-Horizontal-Vertical

TextView-3D-Horizontal

TextView-3D-Vertical

TextView-3D-Horizontal-Vertical

TextView-Fancy-Horizontal

TextView-Fancy-Vertical

TextView-Fancy-Horizontal-Vertical

Ingegneria del Software

Bad solution

We already have an explosion of subclasses. What if we add
another type of border? Or an entirely different property?
◦ We have to instantiate a specific subclass to get the behavior we want.

This choice is made statically and a client can't control how and
when to decorate the component.

39

Ingegneria del Software

Vs Strategy

40

Ingegneria del Software

Using Strategy

Now the TextView Class looks like this:

public class TextView extends Component {

private Border border;

private Scrollbar sb;

public TextView(Border border, Scrollbar sb) {

this.border = border;

this.sb = sb;

}

public void draw() {

border.draw();

sb.draw();

// Code to draw the TextView object itself.

} }
41

Ingegneria del Software

Using Strategy: pro and cons

Pro:
◦ we can add or change properties to the TextView

component dynamically. For example, we could have
mutators for the border and sb attributes and we could
change them at run-time.

Cons:
◦ But note that the TextView object itself had to be modified

and it has knowledge of borders and scrollbars! If we wanted
to add another kind of property or behavior, we would have
to again modify TextView.

42

Ingegneria del Software

Let’s turn Strategy inside out to get
the Decorator pattern

43

Ingegneria del Software

Implementing the Decorator solution

Now the TextView class knows nothing about borders and
scrollbars:

public class TextView extends Component {
public void draw() {
// Code to draw the TextView object itself.
}

}

44

Ingegneria del Software

Implementing the Decorator solution
(cont’d)

But the decorators need to know about components:

public class FancyBorder extends Decorator {
private Component component;
public FancyBorder(Component component) {

this.component = component;
}
public void draw() {

component.draw();
// Code to draw the FancyBorder object itself.

}
}

45

Ingegneria del Software

Implementing the Decorator solution
(cont’d)

Now a client can add borders as follows:
public class Client {

public static void main(String[] args) {

TextView data = new TextView();

Component borderData = new FancyBorder(data);

Component scrolledData = new VertScrollbar(borderData);

Component borderAndScrolledData = new

HorzScrollbar(scrolledData);

}

}

Decorator: Changing the skin of an object
Strategy: Changing the guts of an object

46

Ingegneria del Software

Homework 1

Sulla falsariga dell’esempio di Starbuzz, usare Decorator
per costruire un ponce alla livornese

47

Ingegneria del Software

Homework 2

48

Ingegneria del Software

Homework (cont’d)

Here are two tables representing costs of trees and decorations,
respectively

49

CostTrees

12Fraser Fir

20
Colorado Blue
Spruce

CostDecorations

4Star

1Balls Red

3Balls Silver

5Lights

