
Delegation vs inheritance

Design patterns, Laura Semini,

Università di Pisa, Dipartimento di

Informatica.

1

Delegation vs inheritance

[Mark Grand98]

 Inheritance

 defines a new class, which use the interface of a parent class

while adding extra, more problem-specific methods.

 Delegation

 is a way of reusing and extending the behavior of a class by

writing a new class that incorporates the functionality of the

original class by using an instance of the original class and

calling its methods.

 No.1 issue in OO is if a class A should inherit from B or

A should use B.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Motivation

 Inheritance is a wonderful thing, but sometimes it isn’t

what you want.

 Often you start inheriting from a class but then find that many

of the superclass operations aren’t really true of the subclass.

In this case you have an interface that’s not a true reflection of

what the class does.

 Or you may find that you are inheriting a whole load of data

that is not appropriate for the subclass.

 Or you may find that there are protected superclass methods

that don’t make much sense with the subclass.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Motivation (continued)

 You can live with the situation and use convention to say

that although it is a subclass, it’s using only part of the

superclass function.

 But that results in code that says one thing when your

intention is something else—a confusion you should remove.

 By using delegation instead, you make it clear that you

are making only partial use of the delegated class. You

control which aspects of the interface to take and which

to ignore.

 The cost is extra delegating methods that are boring to

write but are too simple to go wrong.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Replace Inheritance with Delegation

 Create a field for the superclass, adjust methods to

delegate to the superclass, and remove the subclassing.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Example

 One of the classic examples of inappropriate inheritance

is making a stack a subclass of vector.

 In this case I use a simplified form of stack:

class MyStack extends Vector {

public void push(Object element) {insertElementAt(element,0); }

public Object pop() { Object result = firstElement();

removeElementAt(0); return result; }

}

 Looking at the users of the class, I realize that clients do

only four things with stack: push, pop, size, and isEmpty.

The latter two are inherited fromVector.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Example (continued)

 I begin the delegation by creating a field for the delegated

vector. I link this field to this so that I can mix delegation

and inheritance while I carry out the refactoring:

private Vector _vector = this;

 Now I start replacing methods to get them to use the

delegation. I begin with push:

public void push(Object element) {

_vector.insertElementAt(element,0); }

 I can compile and test here, and everything will still work.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Example (continued)

 Now pop:

public Object pop() {

Object result = _vector.firstElement();

_vector.removeElementAt(0);

return result;

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

Example (continued)

 Once I’ve completed these subclass methods, I need to

break the link to the superclass:

class MyStack

private Vector _vector = new Vector();

 I then add simple delegating methods for superclass

methods used by clients:

public int size() { return _vector.size(); }

public boolean isEmpty() { return _vector.isEmpty(); }

 Now I can compile and test. If I forgot to add a delegating

method, the compilation will tell me.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Mechanics
 Create a field in the subclass that refers to an instance of

the superclass. Initialize it to this.

 Change each method defined in the subclass to use the

delegate field. Compile &test after changing each method.

 You won’t be able to replace any methods that invoke a method on

super that is defined on the subclass, or they may get into an infinite

recurse. These methods can be replaced only after you have broken

the inheritance.

 Remove the subclass declaration and replace the delegate

assignment with an assignment to a new object.

 For each superclass method used by a client, add a simple

delegating method.

 Compile and test.
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Delegation (When not using inheritance)

[Mark Grand98]

 Inheritance is a common way of extending and reusing

the functionality of a class. However, inheritance is

inappropriate for many situations:

 Inheritance is useful for capturing is-a-kind-of relationships

which are rather static in nature.

 is-a-role-played-by relationships are awkward to model by

inheritance, where delegation could be a better choice. Using

instances of a class to play multiple roles.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Inheritance vs delegation: changing roles

 Don't use inheritance where roles interchange.

 For example, an airline reservation system may include such

roles as passenger, ticket selling agent and flight crew.

 A class called Person may use subclasses corresponding to

each of these roles.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Example (cont’d)

 The problem is that the same person can fill more than one of

these roles.

 A person who is normally part of a flight crew can also be a

passenger…

 This way, the number of subclasses would increase exponentially.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Example (cont’d)

 If person A, CrewMember, becomes now also a

Passenger, a new object Passenger is created, referring A.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Example (cont’d)

 But then problems with using the specific methods, which

were unforeseen.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Inheritance vs delegation:languages

 In Java or C#, an object cannot change its type once it has

been instantiated.

 So, if your object need to appear as a different object or

behave differently depending on an object state or

conditions, then use Composition

 Refer to State and Strategy Design Patterns.

 If the object need to be of the same type, then use

Inheritance or implement interfaces

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Inheritance vs delegation: hiding

 Don't use inheritance if you end up in a situation where a

class is trying to hide a method or variable inherited from

a superclass.

 If you define a field in a subclass that has the same name as an

accessible field in its superclass, the subclass's field hides the

superclass's version.

 E.g., if a superclass declares a public field, subclasses will either inherit

or hide it. (You can't override a field.)

 If a subclass hides a field, the superclass's version is still part of

the subclass's object data; however methods in the subclass can

access the superclass's version only by using the super

keyword, as in super.fieldName.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Inheritance vs delegation: utility classes

 Don't use inheritance of a utility class

 you're not in control of the parent class and it may change

scope later (inheriting java.util.Vector is a very, very bad idea

since sun may later declare methods deprecated).

 It's always easier to replace changing a class you just use – than

one you inherit from.

 Besides, inheritance exposes a subclass to details of its parent's

class implementation, that's why it's often said that inheritance

breaks encapsulation (in a sense that you really need to focus

on interfaces only not implementation, so reusing by sub

classing is not always preferred).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Places where not to use inheritance (but

rather delegation) (continued)

 Don't use inheritance from a class, which is written very

specifically to a narrow problem - because that will make

it more difficult to inherit from another class later.

 Client classes that use the problem domain class may be

written in a way that assumes the problem domain class is a

subclass of the utility class.

 If the implementation of the problem domain changes in a way

that results in its having a different superclass, those client

classes that rely on its having its original superclass will break.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Potential Drawbacks of Delegation

 There may be some minor performance penalty for

invoking an operation across object boundaries as

opposed to using an inherited method.

 Delegation can’t be used with partially abstract

(uninstantiable) classes

 Delegation does not impose any disciplined structure on

the design.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

