
3 ● The Problem Frames
approach
– definition
– (further) examples

Contex diagram vs.
Problem diagram
● The diagrams we have seen so far are

context diagrams, framing the problem in the
real world
– summary: domains and interfaces

● Problem diagrams supplement those with
requirements
– expressed in terms of interfaces
– referencing the non-machine domains

Context diagram vs.
Problem diagram
● Notation:

Machine Domain Requirementsa b

a requirement reference, i.e. a
predicate that is desired (by someone)
to be true in the Domain, once the
Machine is in place. Notice that the
requirements can only refer to D's
phenomena (not to the machine
internal state).

a shared phenomena reference, these
phenomena are shared between M
and D, and controlled by one of them.
Notation: M!name (controlled by
Machine) or D!name (controlled by
Domain)

Complex problems

● Of course, just adding a “Requirements”
bubble, connected with all the domains, does
not help much

● Since we included in the context diagram all
the domains of relevance for the
requirements, by definition we will have
arrows from Requirements to all of them
– not very useful, just adding complexity

Complex problems

Monitor
machine

ICU
patients

Analog
devices

Factors
database

Nurses'
station

Medical
staff

Periods &
ranges

Requirements

Complex problems

Monitor
machine

ICU
patients

Analog
devices

Factors
database

Nurses'
station

Medical
staff

Periods &
ranges

Requirements

Spaghetti requirements
“The matter is so intricate that everything is related to

everything, and – oh my god! – I cannot keep track of all
the requirements, and it all depends, and no, I am not

sure about it... maybe we can ask again everybody what
they think about it... Shall we hire a consultant?”

Complex problems

● The classical way to manage complexity is by
decomposition into sub-problems
– by analogy: if a task is complex, divide it into

simpler steps
– in contrast: steps are sequential and distinct,

subproblems are often not
● We will say more about decomposition later

on; for now let us focus on simple sub-
problems

Example (simpler)

● Let us consider a simpler (related) problem,
i.e. showing the raw values of the analog
sensors' readings on the nurse station

Monitor
machine

Analog
devices

Nurses'
stationc

e

c: UpdateValue
e: RegisterValue

● This is the
context diagram

● What about the
requirements?

Example (simpler)

● Let us consider a simpler (related) problem,
i.e. showing the raw values of the analog
sensors' readings on the nurse station

Monitor
machine

Analog
devices

Nurses'
stationc

e

c: UpdateValue
e: RegisterValue

Up to date
display

b

e

b: DisplayData

Writing the requirements

● But how are requirements written?
– Not really relevant for our discussion
– Main goal: relationships between interface phenomena of

the domains must be clear
● Formality?

– Sure, if you need the assurance and can handle it
– Logics, automata, state diagrams, equational, ...

● Informality?
– Sure, as long as it is rigorous enough to support

implementing the specification
– Natural language, sketches, ...

Example (simpler)

● Up to date display:
–

– Nurses' station must display the most recently
read value for each devices

Monitor
machine

Analog
devices

Nurses'
stationc

e

c: UpdateValue
e: RegisterValue

Up to date
display

b

e

b: DisplayData

∀ AD! RegisterValue  factor , v.NS ! DisplayData  factor=v

Example (simpler)

● Up to date display:
–

– Nurses' station must display the most recently
read value for each devices

Monitor
machine

Analog
devices

Nurses'
stationc

e

c: UpdateValue
e: RegisterValue

Up to date
display

b

e

b: DisplayData

∀ AD! RegisterValue  factor , v.NS ! DisplayData  factor =v

Requirements
refer to AD

Requirements
constraint NS

Solving the problem

● We need to
– Describe the requirements (optative description,

how the customer would like the world to be)
– Describe the domain properties (indicative

description, how physical domains will react to
phenomena)

– Build the machine specification (optative
description, how the machine should react at its
interface)

● Once more: S ∪ D ╞ R

Solving the problem

● R - Requirements: (up to date display)

● D - Domains: (nurses' station is working)

● S - Specification: (program to write)

● Hence: S ∪ D ╞ R
Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue

Up to date
display

b

e

b: DisplayData

∀ AD! RegisterValue  factor , v.NS ! DisplayData  factor =v

MM !UpdateValue  factor , v⇒ NS ! DisplayData  factor =v

AD! RegisterValue  factor , v⇒MM !UpdateValue  factor , v

Solving the problem
(the small print)

● Notice that what we have presented is a
simplified version (for clarity)

● Not a sub-problem of the original problem
– Some difference:

● The original problem stated that the periods of samples
where to be configured, hence it was a pull model

● In this latter version, we assumed a push model, with the
sensors sending the value:

– In the original, causality would follow a different chain
– More on this later on

AD! RegisterValue  factor , v

Problem solved?

● From a purely
requirements view,
yes
– The previous

problem diagram
contains enough
information to realize
the specification

– Plus, of course,
needed “technical”
details

● From a human-
centric view, no
– We have not taken

into account any
human-related issue

– We have solved the
correctness problem

– Did not do any
elicitation really

– How do human
issues fit?

Problem solved?

● What about
distribution?
– We have ignored

how different pieces
of equipment interact

– Those were really
parts of a (miniature)
distributed system

– Sensors and related
electronics

– Nurses' station

● Shall we focus more
on distribution here?
– Hard to give a

'blanket' answer
– How often do

communication
infrastructure break?

– Does it introduce
significant delays?

● Probably not (here)

Example (simpler): adding humans

● Extending the problem with humans
● New requirements:

– Nurses must be aware of each patient's condition

Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue
f: FactorEvidence
g: DisplayedValue

Nurses aware
of patients'
conditions

ICU
Patients

Nursesg

f

g

f

Example (simpler): adding humans

● Extending the problem with humans
● New requirements:

– Nurses must be aware of each patient's condition

Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue
f: FactorEvidence
g: DisplayedValue

Nurses aware
of patients'
conditions

ICU
Patients

Nursesg

f

g

f

Connection domains

Connection domains

● Connection domains are characterized as:
– They connect two other domains
– They transfer phenomena on one interface to

phenomena on another
– They have properties that is worth modelling

(otherwise, they can be omitted)
● Failures
● Delays
● Filtering
● Etc.

● Distinction is conceptual, not formal

Connection domains

● Most communication infrastructure can be
considered a connection domain

● However, there are further properties of
distributed systems to take into account
– Communication is only one of them
– What about separate memory spaces?
– Different processing speed?
– Different environmental conditions?

● e.g., parts of a distributed system could sit inside the
melting reactor of a nuclear power plant, others out of it

Solving the problem

● R - Requirements: (up to date display)

● D - Domains:
– (Nurses' station is working)

– (Analog devices are working)

– (Nurses are paying attention)

– (Patients are attached
to the devices)

DisplayedValue  patient , factor =FactorEvidence  patient , factor 

MM !UpdateValue  p , f , v⇒ NS ! DisplayedValue  p , f =v

Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue
f: FactorEvidence
g: DisplayedValue

Nurses aware
of patients'
conditions

ICU
Patients

Nursesg

f

g

f

IP ! FactorEvidence  p , f , v⇒ AD! RegisterValue  p , f , v 

...

...

Solving the problem

● R - Requirements: (up to date display)

● D - Domains:
– (Nurses' station is working)

– (Analog devices are working)

– (Nurses are paying attention)

– (Patients are attached
to the devices)

DisplayedValue  patient , factor =FactorEvidence  patient , factor 

MM !UpdateValue  p , f , v⇒ NS ! DisplayedValue  p , f =v

Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue
f: FactorEvidence
g: DisplayedValue

Nurses aware
of patients'
conditions

ICU
Patients

Nursesg

f

g

f

IP ! FactorEvidence  p , f , v⇒ AD! RegisterValue  p , f , v 

...

...

Human domains
We have a problem here: human domains are

biddable, not causal, hence we can only
hope (and not guarantee) that they will

behave as expected

(Not) solving the problem

● Once biddable domains come into the picture
(and humans are always, at most, biddable),
we cannot develop a specification that will
guarantee S ∪ D ╞ R

● Two alternatives:
– Renounce solving the problem
– Develop means to introduce quasi-causal behaviour in a

biddable domain
● We will obtain best-effort, approximate

satisfaction of the requirements (at most)

Causality and almost-causality

● Notation:
– ╞, = causal entailment, implication
– ╞, = quasi-causal entailment, implication

 (best effort to make it behave as causal)
● Effectiveness of quasi-causality should be

considered explicitly
– In particular, the risk of quasi-causality being

broken should be assessed
– Mitigation and counter-measures established

● These would usually add to requirements

⇒
⇒

Causality and quasi-causality

● Patient p presents a certain (medical) condition [IP]
IP!FactorEvidence(p,f,v) [f]
AD!RegisterValue(p,f,v) [e]
MM!UpdateValue(p,f,v) [c]
NS!DisplayedValue(p,f)=v [g]
Nurses aware of patient's condition [N]

Monitor
machine

Analog
devices

Nurses'
stationc

e
c: UpdateValue
e: RegisterValue
f: FactorEvidence
g: DisplayedValue

Nurses aware
of patients'
conditions

ICU
Patients

Nursesg

f

g

f

⇒
⇒
⇒
⇒
⇒

MM ∪ N,NS,AD,IP ╞ R

Example (quasi-causality)

● How can we ensure that displaying the data on
the NS will cause nurses to know of a patient
condition?

● Typical HCI issue:
– Add a second channel, beyond static display

● Audio alarm, to be played whenever a value change
● Blink a new value on screen for the first 5 seconds
● Implant nurses with a microchip which will give out a

moderate electrical shock when a value change
– Separate physical location from notification

● Provide all nurses with portable displays, so they don't
need to sit at the station

Example (quasi-causality)

● Will such devices solve the problem?
– No, they can all fail

● Deaf nurse (so popular among patients!)
● Nurse distracted, does not look at screen during blink
● Nurse faints when given electrical shock
● Portable display's battery exhausted, or device out of

reach
● Real world is always much more complex

than we can model
– What we can do is to understand the extent of the

safe bounds for our system's operations

Example (quasi-causality)

● Possible mitigations:
– Louder ring tone, using induction loop, repeated

alarms
– Blink until explicitly acknowledged
– Make sure electrical shock is not a health hazard
– Have backup battery on board, signal when main

exhausted, or provide better radio coverage
● Possible counter-measures:

– On evidence of a changed value being ignored for
some time, notify someone else through other
means (e.g., message doctor)

Example (quasi-causality)

● Possible mitigations:
– Louder ring tone, using induction loop, repeated

alarms
– Blink until explicitly acknowledged
– Make sure electrical shock is not a health hazard
– Have backup battery on board, signal when main

exhausted, or provide better radio coverage
● Possible counter-measures:

– On evidence of a changed value being ignored for
some time, notify someone else through other
means (e.g., message doctor)

GUIs are only part of the story!
As shown in the example, interaction may involve

multiple channels and behaviours.
Never think in terms of a given GUI toolkit only (unless
your problem is a very standard one, for which a known

GUI-based interaction pattern is well established)!

Example (quasy-causality)

● Can we render the communication links quasi-
causal as well?
– Much harder: if a wire is cut, it's hard to pump bits

through it
● We can work on the mitigation side

– e.g.: ensure we have a PING or a carrier over the
wire

– So that the system can detect when the
connection is broken and alert the nurses

● OMG... alerting is quasi-causal!

Exercise
biddable domains and quasi-causality

● What can we tell about how to make the ICU
Patient domain quasi-causal?

Analog
devices

ICU
Patients

f

f: FactorEvidence

State of practice

