
Chapter 5

Semantics

In this chapter we start studying the semantics of programming languages.
We saw how the syntax of a programming language defines which are its
well-formed programs independently of the functions that they compute.
The semantics gives a meaning to well-formed programs by interpreting
their syntax symbols. Semantics provides us with insights on the dynamic
evolution of programs as well as on static properties that hold indepen-
dently of execution aspects.
We first motivate the need of a formal definition of semantics and we
briefly survey the main features of operational, denotational and axiomatic
semantics. We show that the syntactic apparatus of a language can be
considerably simplified to deal with semantics, thus introducing abstract
syntax. We then start studying some desirable properties of semantics.
The first is compositionality that can be implemented via inductive defini-
tions on the structure of the abstract syntax of languages. We then study
substitutivity and full abstraction and we relate them together. Modularity
of definitions is discussed as well. Finally, we briefly introduce the static
properties described by semantic models.

5.1 Why semantics
Historically, the semantics of programming languages has been given in
natural language simply by structuring the presentation for instance as in

73

74 CHAPTER 5. SEMANTICS

the user manuals. Hence, the meaning of constructs is described ambigu-
osly. The only exact definitions are the ones provided by the implemen-
tations of the intermediate machines of the languages. As a consequence,
different implementations define different programming languages.

A formal definition of the semantics of programming languages pro-
vides constructs with an exact and unambiguous meaning. Therefore, the
implementor of the language has a precise specification and dialects of
languages should arise no more. Furthermore, serious programmers can
understand what their programs do exactly without executing them. Pro-
grammers can also benefit from formal descriptions such as set of axioms
to verify and transform their programs. Finally, formal theories allow us
to prove essential properties of programs like for instance security con-
straints.

Summing up a formal semantics is of help both for designing, imple-
menting and using a programming language. In fact, the semantics should
be a trade off between the language and the implementation of its interme-
diate machine. The foundamental aspects concerning the meaning of lan-
guages are described in this book at two levels: the formal semantics and
the implementation of the intermediate machine. The semantics is inde-
pendent of the particular implementation of a language, although it shuold
highlight the potential of troubles and suggest some design alternatives.
The implementation of the intermediate machine fixes some architectural
aspects and must agree with the formal semantics. In other words, we can
interpret the semantics as an abstract specification of the intermediate ma-
chine of the language. The programmer is interested in the structure of the
intermediate machine as well, because it influences the efficiency of the
programs. In particular, a programmer is intereted in knowing which part
of the machine are hardware, firmware or software and in how high level
constructs are translated into sequences of instructions of the host machine
to have a rough estimation of the performance of programs.

5.2 Which semantics
There exist some techniques to provide programs with meaning. For in-
stance, besides the operational semantics that we already mentioned there

5.2. WHICH SEMANTICS 75

are denotational and axiomatic semantics as well. We briefly sketch the
peculiarities of these approaches.

• Operational semantics. The meaning of a construct of a language
is given by the operations that it induces on the (abstract) machine.
Therefore the operational semantics describes how the effect of the
execution of a construct is obtained.

• Denotational semantics. The meaning of a construct of a language is
given by a mathematical object. Therefore the denotational seman-
tics only describes the effect of the execution of a construct.

• Axiomatic semantics. Peculiar properties of the execution of a con-
struct are expressed via assertions. As a consequence, some aspects
of the execution and of its effect can be ignored by axiomatic seman-
tics. This semantics is thightly connected with mathematical logics.

We want to stress here that the different approaches at the formal defini-
tion of semantics are not mutual exclusive and they are not in competi-
tion. For instance the operational semantics is better suited than the other
approaches for giving guidelines to implementors and to deal with con-
currency and distributed issues of languages. The denotational semantics
is instead more suitable to reason about programs and to study properties
like detecting whether all variables have been initialised before their usage
or whether all parts of programs are reachable. Action semantics is more
concerned with readability still maintaining the formal rigour and peculiar-
ities of denotational semantics. The axiomatic semantics provides us with
a logical system that can be used to prove properties in a semi-automatic
way. We shall see in the next sections that the operational semantics can
be given in a logical style as well, thus recovering the peculiarities of the
axiomatic approach.

We exemplify in the next subsections the application of the kinds of
semantics above to the simple program

z:=2; y:=z; y:=y+1; z:=y;

made up of four assignment statements.

76 CHAPTER 5. SEMANTICS

5.2.1 Operational semantics
Since the main characteristic of the operational semantics concerns the
description of how programs are executed, we can state informally that our
sample program is executed by

• performing the statements separated by semicolons sequentially and
in the order in which they are listed from left to right; and by

• determining for any statement the value of its right hand side (the
one on the right of the symbol :=) that is assigned to the left hand
side.

Let the state of the abstract machine that executes our sample program
be a pair whose first component is the program to be run and the second
component is a function that associates any variable in the program with
its current value. Assume that initially any variable holds the value 0.
The execution of the program can then be represented by the following
sequence of transitions between states

〈z:=2; y:=z; y:=y+1; z:=y;, [z = 0, y = 0]〉 →

〈y:=z; y:=y+1; z:=y;, [z = 2, y = 0]〉 →

〈y:=y+1; z:=y;, [z = 2, y = 2]〉 →

〈z:=y;, [z = 2, y = 3]〉 → [z = 3, y = 3]

where we represent the function component of the states as a sequence of
elements x = v to mean that variable x has value v. In the first step we
execute the leftmost assignment that changes the value of z from 0 to 2
(see the function component of the resulting state). The program which
is left to execute is y:=z; y:=y+1; z:=y;. The second step assign to
y the value of z, then we increment y. The last step assign to z the new
value of y. In the final state we simply report the function part of the state
because no other statement has to be executed.

The operational description of the execution of our sample program is
indeed an abstraction of how the program is executed. No architecture
detail like usage of registers or addressing techniques is explicitly given.
Therefore operational semantics is architecture independent although deal-
ing with execution of programs.

5.2. WHICH SEMANTICS 77

The kind of operational semantics that we used in the example above is
sometimes called small step semantics because each step of a computation
that produces partial changes on the abstract machine is visible. Another
approach to define operational semantics is called natural (or big step) se-
mantics. This kind of semantics describes in a single (big) step the overall
computation. In our example we have a single big transition

〈z:=2; y:=z; y:=y+1; z:=y;, [z = 0, y = 0]〉 ⇒ [z = 3, y = 3]

Although big step semantics is still defined in terms of transitions between
configurations is quite close to denotational semantics. In fact, the effect
of the execution of a program on the final configuration is available. The
intermediate steps are hidden in the big transition. A drawback of big step
semantics is that it applies only to terminating programs. We will discuss
small and big step semantics in a later chapter.

5.2.2 Denotational semantics
The main characteristics of the denotational semantics is the description
of the effect of the execution of a program. We state below informally the
effect of the execution of our sample program.

• The effect of the execution of a sequence of statements separated
by semicolons is the function composition ◦ of the effects of the
individual statements listed from left to right; and

• the effect of the execution of any statement is a function that given a
state produces a new state in which the value of the right hand side
of the assignement is equal to the one of the left hand side.

We define an interpretation function for any construct to associate with it
a denotation (the mathematical object describing the effect of the execu-
tion of the construct). For our running example we need an interpretation
function E for the assignment. It takes as arguments the assignment to be
executed and the current values of variables and returns the new value of
the variable modified by the assignment. For instance,

E [[z:=2]]([z = 0]) = [z = 2].

78 CHAPTER 5. SEMANTICS

The meaning of the program is obtained by composing the functions E
applied to all the statements.

E [[z:=2; y:=z; y:=y+1; z:=y;]]([z = 0, y = 0]) =

(E [[z:=y]] ◦ E [[y:=y+1]] ◦ E [[y:=z]] ◦ E [[z:=2]])([z = 0, y = 0]) =

(E [[z:=y]](E [[y:=y+1]](E [[y:=z]](E [[z:=2]])([z = 0, y = 0])))) =

(E [[z:=y]](E [[y:=y+1]](E [[y:=z]])([z = 2, y = 0]))) =

(E [[z:=y]](E [[y:=y+1]])([z = 2, y = 2])) =

E [[z:=y]]([z = 2, y = 3]) = [z = 3, y = 3]

Note that we describe the effect of our program simply by manipulating
mathematical objects. Indeed the peculiarity of the denotational semantics
is to abstract away from any execution concept. The difference with oper-
ational semantics would be more evident if we chose a program with more
sophisticated constructs.

A disadvantage of denotational semantics is its readability. In fact, any
definition is a composition of functions that tends to become long-wired
and error-prone. A variant of denotational semantics is action semantics
which tries to translate denotational formulae in english-based readable
sentences.

Action semantics uses a standard family of operators to describe the
standard features of programming languages. Standard structures called
facets with operators to manipulate their elements are pre-defined for ex-
pressions, declarations and commands. Combinators to compose the oper-
ators of the facets are given as well.

The action semantics has two levels of abstraction. The upper level
specifies a language in terms of actions: entities that can be performed
on some input data and producing outcomes for other actions. This is
the aspect more directly connected to abstract machines. The lower level
specifies the actions.

For instance the meaning of the assignment

z := 2

5.2. WHICH SEMANTICS 79

looks like

execute[[z := 2]] =

(find z and evaluate[[2]]) then update

where the words in boldface are operators and the ones in typewritten are
combinators. The operators together with their arguments form the actions.
Thus, find z is an action and evaluate[[2]] is another one. The two actions
are combined by the combinator and. The operator find extracts the loca-
tion of z and evaluate returns the value associated with the literal 2. The
update operator generates the association of z with the new value.

The action semantics of our running example is

execute [[z := 2; y := z; y := y + 1; z := y]] =

execute [[z := 2]] andthen

execute [[y := z]] andthen

execute [[y := y + 1]] andthen

execute [[z := y]]

where each execute is expanded as in the example above.
A distinguishing feature of action semantics is that the structure to hold

values of identifiers such as stores are dealt with implicitly.

5.2.3 Axiomatic semantics
Axiomatic semantics is deefined by giving a set of proof rules defined ac-
cording to the syntax of the language. This semantics asserts properties
of programs rather than defining their meanings. The literature often re-
port the sentence partial correctness properties for the properties studied
by axiomatic semantics. A program is partially correct with respect to a
precondition and a postcondition if whenever the initial state fulfill the pre-
condition and the program terminates, then the final state is guaranteed to
fulfill the postcondition. The word partial refers to the fact that the pro-
gram may not terminate. In fact, the termination of the program under
investigation must be proved separately. If we prove partial correctness
and termination we have total correctness.

80 CHAPTER 5. SEMANTICS

Hereafter we let P , Q, R range over preconditions and postconditions,
i.e. assertions of a first order language with equality. We write {P}c{Q}
to mean that the precondition P holds, then the command c is executed and
the postconditionQ holds in the state reached.

The rule
{P}c0{Q}, {Q}c1{R}

{P}c0; c1{R}

states that the sequential composition of two commands is possible if the
postcondition of the first command coincides with the precondition of the
second one. Finally, an important rule is the one of consequence

P ′ ⇒ P, {P}c{Q}, Q⇒ Q′

{P ′}c{Q′}

It states that less informative formulae can be inferred from more informa-
tive ones.

In our running example we can take as precondition of the sequence
of assignments {tt} and as postcondition {z = y}. The proof of partial
correctness must establish that if the program terminates, it ends up in a
state where z = y. We can view the proof as a derivation tree in a logical
system of axioms and inference rules.

{z = 0}⇒ {tt}, {tt}z:=2{z = 2}, {z = 2}⇒ {z = 2}

{z = 0}z:=2{z = 2}
, {z = 2}y:=z{z = 2, y = 2}

{z = 0}z:=2;y:=z{z = 2, y = 2}

The postcondition in the conclusion can be written {z = 2, y +1 = 3} that
can be seen as the precondition to apply the assignment y:=y+1 and to
produce the postcondition {z = 2, y = 3}. By applying the consequence
rule we have

{y = 3, z = 2}⇒ {y = 3}, {y = 3}z:=y{z = 3, y = 3}, {z = 3, y = 3}⇒ {z = y}

{y = 3, z = 2}z:=y{z = y}

For an evidence that the axiomatic semantics consider only some aspects
of the execution of programs, we may list many programs that satisfy the

5.3. ABSTRACT SYNTAX 81

pre and postconditions above, but that beahave differently. An example is
y:= -1000;z:=y or simply z:=y. Furthermore, a program can satisfy
many different pre- and post-conditions. For instance our sample program
satisfies the precondition {z = n} and the postcondition {z = n + 3} as
well.

It is important for the formal system of axioms being sound, i.e. every
formula derived in the formal system is true in the semantic interpretation
considered. Another important feature is completeness. It says that ev-
ery true formula in the interpretation considered is derivable in the formal
system.

5.3 Abstract syntax
The concrete syntax of a language is a set of strings over an alphabet.
It is usually specified through a context free grammar G in BNF nota-
tion according to theory developed in Chapters 2 and 4. The definitional
mechanisms are syntactic in nature because they describe how programs
are assembled from their parts. In fact, we start from basic components
(the tokens or terminal symbols) and we follow some rules (productions or
BNF definitions) to compose them.

Sometimes context free grammars contains nonterminals and produc-
tions which are not needed to derive the strings of a language. They are
introduced to rule out ambiguities from grammars like T and F in the Ex-
ample 2.59. This allows us to define deterministic algorithms (parsers) to
decide whether a string belongs or not to a language. Furtheromre pro-
ductions and BNF definitions take care of the morphological aspects of
program constituents. For instance, grammars differ if we represent as-
signment as x:= e or ASS(x, e) or e &→ x or even x = e as in C. How-
ever, to study the meaning of an assignment we are not concerned at all
with its morphological aspect. We only need to recognize the occurrence
of an assignment within a program and to isolate its main arguments (in
the example above x and e).

The abstract syntax of a language was originally introduced by Mc
Carthy as an interface between the concrete syntax and the semantic inter-
pretation of the language. Abstract syntax is analytic rather than synthatic

82 CHAPTER 5. SEMANTICS

because describes how to decompose a program into basic bricks instead
of showing how to compose them. Furthermore, it abstracts from the pecu-
liar notation used to represent program components. We pick one notation
that is well-suited for semantic definitions and we define it as simply as
possible.

Abstract syntax is obtained by erasing from the concrete one irrelevant
information such as precedence among operators, hierarchies of deriva-
tions and so on. In fact, when dealing with semantic issues, we are not
interested in the way in which strings are derived, but only in their mean-
ing. Derivation trees (also called concrete syntax trees) can be thus simpli-
fied by collapsing sequences of nonterminals along a path. The set of trees
obtained in this way constitute the abstract syntax trees and the grammar
(possibly ambiguous) that originates them defines the abstract syntax.

Definition 5.1 (abstract syntax tree). An abstract syntax tree is a tree in
which each node represents an operator and the children of the node rep-
resent the operands.

EXAMPLE 5.2 The concrete syntax tree of the expression id + id ∗ id is depicted
in Fig. 5.1(a). The nodes labelled by nonterminals provide us with no insight on
the meaning of the operation.
The abstract syntax tree (Fig. 5.1(b)) rules out superflous details to collect the
essential information involved in the description of operations: the operators and
their arguments. (The abstract syntax of the arithmetic expressions is defined by
the grammar in the Example 2.18.) ♦

What we do with abstract syntax is to consider the deep structure of
program components. As a consequence, we associate syntactic categories
with sets of strings with independent semantic meaning. From an applica-
tive point of view, we may assume that the abstract syntax of a language is
the outcome of a parser.

5.4 The scenario
In the previous section we reported some examples of semantic definitions,
and we introduced the notion of abstract syntax as the starting point for the

5.4. THE SCENARIO 83

E +

E + T id ∗

T T ∗ F id id

F F id (b)

id id

(a)

Figure 5.1: Concrete (a) and abstract syntax tree (b) of id + id ∗ id.

study of semantics. We here formalize the notion of semantics and then we
show how the examples above fit our framework.

The idea of a semantics has several components. There is an (object-)
language L to the terms of which we have to give meaning. We assume
hereafter that L is given through an abstract syntax. The meaning of a
term of L is a term of a meta-language M. The meta-language is usu-
ally more abstract than the object-language and it highlights the aspects of
interest like the way in which a term is executed or simply the effect of
its execution. Note that the meta-language can be flowcharts, lattices or
other mathematical structures, and not necessarily a set of strings. A se-
mantic function E maps terms of L to their meaning inM. Finally, there is
an equivalence relation ≡ on meta-language terms establishing when they
are equal. We would like to have a semantic function E such that

∀l, l′ ∈ L . E [[l]] = E [[l′]] ⇒ E [[l]] ≡ E [[l′]].

The intuition is that we can exchange (sub-) programs that have the same
meaning without changing the behaviour of a system.

Definition 5.3 (semantics). A semantics is a quadruple

〈L,M, Ei∈I,≡〉,

where

84 CHAPTER 5. SEMANTICS

• the object-language L is a free algebra possibly many-sorted (see
App. A.5); 1

• the meta-languageM is an algebra;

• Ei∈I : L→M is an indexed family of semantic functions; and

• ≡ ⊆M×M is an equivalence relation on which we require ∀m, m′ ∈
M . m = m′ ⇒ m ≡ m′.

The following examples shows how the three kinds of semantics intro-
duced in the previous section can be casted into our definition.

EXAMPLE 5.4 (operational semantics) Consider the operational semantics of the
sample program in Subsect. 5.2.1. The object-language L is the language whose
meaning we are defining. The set of the states that a program can pass through is
S = {〈l, ρ : V ar(l) → V al〉 | l ∈ L} where l is the program to be executed and
the function ρ assigns values (from the set V al) to the variables in l (denoted by
V ar(l)). Then, the meta-language is defined asM = 〈S,−→〉 where −→ ⊆ S × S
is the transition relation of Subsect. 5.2.1. Note thatM is made up of graphs rep-
resenting the dynamic evolution of programs sometimes called transition graphs.
We have a single semantic function E : L →M. As far as big step semantics is
concerned, we only need to change the definition of −→ into⇒.

Since we defined no equivalence relation on the terms ofM, we can let ≡ be
for instance the syntactical identity or an isomorphism of graphs preserving the ρ
component of nodes. ♦

EXAMPLE 5.5 (denotational semantics) Consider the denotational semantics of
the sample program in Subsect. 5.2.2. The object-language L is the language
whose meaning we are defining. The meta-language is a function ρ : V ar(l) →
V al that assigns values to variables. The semantic function is the E defined in
Subsect. 5.2.2 and the equivalence can be taken again to be syntactic equality.

Note that we here only consider the assignments of values to variables be-
cause we are only interested in the effect of the execution of the program. In the

1Note that the structure of an abstract grammar originates a signature. Therefore, we
can say that the abstract syntax of a language is a term algebra. Since a term algebra
is completely defined by its signature, we can define the semantics of the language by
interpreting the symbols of the signature into a Σ-algebra.

5.5. COMPOSITIONALITY 85

Example 5.4 we define instead the sequence of transitions → that leads to the fi-
nal assignment of values to variables because we were interested in how terms are
executed. As a consequence, we can simplify the structure ofM by only taking
the second component of the meta-language used for the operational semantics.
This is the effect of denotational semantics being more abstract than operational
definitions. ♦

EXAMPLE 5.6 (action semantics) Since action semantics is a different formalism
to express denotational formulae, we have the same object-language L, meta-
languageM and equivalence relation of Example 5.5. The definition of the family
of semantic functions is given in terms of actions and their combinators. ♦

EXAMPLE 5.7 (axiomatic semantics) Consider the axiomatic semantics of the
sample program in Subsect. 5.2.3. The object-language L is still the language
whose meaning we are defining. The meta-languageM is a set of formulae made
up of programs of L enriched by pre- and post-conditions. The semantic function
E maps programs into proofs in the formal system of axioms. Finally,≡ groups to-
gether the proofs that satisfy the same pre- and postcondition (see Subsect. 5.2.3).
♦

We end this section with a remark. Note that the equivalence relation
≡⊆ M ×M induces an equivalence relation on the strings of L defined
by l ≡ l′ ⇔ [[l]] ≡ [[l′]].

5.5 Compositionality
Any non trivial language allows one to write infinite programs (see Chap-
ter 2). An immediate consequence is that the definition of a semantic func-
tion (independently of the kind of semantics chosen) cannot rely on par-
ticular programs. Semantic definitions only must consider the elementary
and basic components of programs. Then, a mechanism to assemble to-
gether the meanings of these components to get the meaning of the whole
program must be supplied. We express this idea by the following principle.

Principle 5.8 (compositionality). The meaning of any sentence is function
of the meaning of its immediate constituents.

86 CHAPTER 5. SEMANTICS

The principle of compositionality is essential to define the behaviour
or the meaning of a system that has potential infinite elements. It is not
only typical of semantic definitions, but of many fields of computer sci-
ence, mathematics and logics. Indeed this principle dates back to the work
of Frege in the last decade of 1800. As a remark, some authors refer to
compositional definitions as syntax-directed definitions.

The problem of finitely describing infinite objects was already faced
in Chapter 2 where we used grammars as a generative description of lan-
guages. We can now rely on grammars to identify the basic constructs
of a language and on the grammar productions to devise composition of
elementary meanings.

EXAMPLE 5.9 (binary numerals) A binary numeral is described by the following
BNF-like grammar

B ::= B0 |B1 | 0 | 1

that coincides with the object-language L. The meaning of a binary numeral is
its corresponding number in decimal notation. Hence the meta-language for this
example is the set of natural numbers IN . We apply a simple algorithms that
works independently of the binary chosen, and we codify it in the definition of the
semantic function E : B → IN . In particular, we have

E [[0]] = 0, E [[1]] = 1, E [[B0]] = 2× E [[B]], E [[B1]] = 2× E [[B]] + 1.

To satisfy compositionality, we define the meaning of a composite binary numeral
like B0 or B1 in terms of the meaning of the numerals B. Note that the operation
of concatenation of literals within brackets [[]] (e.g., B0) is defined on L, while
× and + are the usual multiplication and summation on IN and therefore are
operations of our meta-language.

For the sake of completeness, to characterize completely the semantics of
binary nuemerals we must define an equivalence relation on meta-language terms.
We let here ≡ be the equality = on IN . ♦

The denotational semantics as introduced in Subsect. 5.2.2 immedi-
ately satisfies the principle of compositionality because the meaning of
programs is obtained by function composition. The axiomatic approach
satisfies the principle above as well. In fact, the assertions on a program

5.6. SUBSTITUTIVITY AND FULL ABSTRACTION 87

are derived by the ones on its components (the premises of the inference
rules).

The operational semantics has been considered for a long time to lack
compositionality. Plotkin in the eighties solved the problem by defining
the operational semantics in logical style by following the definition of
the syntax of the language (see Subsect. ??) and relying on the syntactic
decomposition of complex sentences into simpler ones. The pattern of the
decomposition being suggested by the grammar that defines the language.

We end this subsection with a remark. Note that there are constructs of
programming languages to which it is not easy to give meaning composi-
tionally.

EXAMPLE 5.10 Consider for instance a function call. Its evaluation depends on
the body in the definition (declaration) of the function, but such a definition does
not occur in the statement of the call.

Another example is given by the while loop. Its meaning can be defined
relying on an if statement by rewriting

while cond do stmt

as

if cond then stmt; while cond do stmt

Here compositionality is violated because the if statement does not occur in the
while definition. ♦

5.6 Substitutivity and full abstraction
A suitable definition of the equivalence relation within a semantics induces
an equivalence on L such that two sentences are equivalent l ≡ l′ if they
can be exchanged one another within any program without affecting its
meaning. Intuitively, this means that there is no way to distinguish the
behaviour of the equivalent sentences. This property is usually known as
substitutivity principle. Consider again Example 5.9. It holds the equiva-
lence 0B ≡ B because [[B0]] ≡ [[B]]. To formalize this principle we need
the notion of program context.

88 CHAPTER 5. SEMANTICS

Definition 5.11 (context). A program context C[•] is a program with a
hole. The definition easily generalizes to many holes contexts C[•, . . . , •].
Hereafter we avoid the word program when unambiguos.

We now report some examples of contexts.
EXAMPLE 5.12 (contexts) Consider the program fragment

if cond then

while cond1 do stmt

The context of the first condition is

Ccond[•] = if • then

while cond1 do stmt

The two holes context of the first condition and the statement is

Ccond,stmt[•, •] = if • then

while cond1 do •

♦

Eventually we can state the principle of substitutivity.

Principle 5.13 (substitutivity). Let l and l′ be two sentences that can occur
within program contexts C[•]. Then, l ≡ l′ ⇒ ∀C[•] . C[l] ≡ C[l′].

Substitutivity is the theoretical basis for optimizing code with respect
to performance, reliability, readability, security and so on. For instance
optimizing compilers that drop from the object code variables which are
never used or that transform loops that are entered only once into sequence
of statements, apply a semantic equivalence of sentences of the language.

A good semantic definition should assign the same meaning to all the
sentences that are equivalent in the sense above. This property is called
full abstraction and it is formalized below.

Principle 5.14 (full abstraction). Let l and l′ be two sentences that can
occur within program contexts C[•]. Then, ∀C[•] . C[l] ≡ C[l′] ⇒ l ≡ l′.

Full abstraction is the converse of substitutivity. It allows one to state
that any optimization that can be performed is considered by the equiva-
lence relation≡ on sentences. We remark that full abstraction is extremely
difficult to implement for many languages.

5.7. MODULARITY 89

5.7 Modularity
The definition of the semantics of complex languages and their design is
usually an incremental task. One starts considering the basic constructs
and then enlarge the set of operators adding new definitions. To make
this process easy it must not be necessary to modify the definitions of the
already considered constructs when adding a new one. Thus, we state the
following principle.

Principle 5.15 (modularity). The semantic definitions of a language must
not be changed when adding new constructs to the language.

Although modularity may seem a notational matter, it has a profound
practical application for the separete compilation of the modules of pro-
grams.

5.8 Static semantics
In the previous section we exemplified the application of semantic defi-
nitions to describe the execution of programs. The properties involving
the evolution of programs are called dynamic and the semantic techniques
used to study them are classified as dynamic semantics.

There are properties of programs that can be verified without running
(intended also as semantic simulation of execution) them. These properties
are static, the semantic techniques used to verify them are known as static
semantics and the verification is usually called static analysis. The main
example of static analysis is maybe type theory.

5.8.1 Type theory
The type theory is a formal language to organize the values manipulated
by programs. The central notion is the one of type. The main role of type
theory is to rule out from the set of programs syntactically correct the ones
that will surely generate an execution error when running. Note that this
does not mean that well-typed programs cannot occur in execution errors.

