Operating Systems:
Principles and Practice

Main Points

* Operating system definition

— Software to manage a computer’s resources for its
users and applications

* OS challenges

— Reliability, security, responsiveness, portability, ...

* OS history
— How are OS X, Windows 7, and Linux related?

What is an operating system?

Users
e Software to %

manage a
computer’s
resources for
its users and
applications

User-
mode

Kerneal-
mode

X

A A A
P P P
P P P System
;lerar:,.-
<
File Virtual Kernel-user
system TCP g Memory | Interface
_ CPU [Abstract
networking scheduling virtual machine)
Hardware-5pecific Software :_:
and Device Dnivers Hardwar:a-
Abstraction
Laver
CPU Address
Hardware Translation
Graphics
Processor Metwork

Operating System Roles

* Referee:
— Resource allocation among users, applications
— |Isolation of different users, applications from each other
— Communication between users, applications

e |llusionist

— Each application appears to have the entire machine to
itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

* Glue
— Provide common, standard services to applications
— Simplifies application developement
— Libraries, user interface widgets, ...

Operating system design patterns

* Cloud computing

— Referee: how to allocate resources between competing
applications in the cloud?

— lllusionist: computing resources in a cloud evolve continuously,
how to isolate applications from this evolution?

— Glue: how to provide common, standardized access to the cloud
services?

e Web services

— Referee: ensure responsiveness when multiple tabs are opened
at the same time

— Illusionist: web services are geographically distributed for fault
tolerance. Mask server failures to the users.

— Glue: how does a browser achieve portable execution of scripts
across different OS and HW platforms?

Operating system design patterns

 Multi-user database systems

— Referee: how to enforce data access and privacy to
different users ?

— |llusionist: how to mask failures so that data remains
consistent and available to users?

— Glue: what common services to programs development?

* |nternet

— Referee: guarantee differentiated services to users and
protect against DoS, spam, phishing etc...

— lllusionist: internet appears as a unique, world-wide
network but it is not!

— Glue: internet protocols make applications independent of
the underlying network architecture

Example: web service

2 Read .,-ﬂ"_—._—_h"ﬁl

1. GET index.htrmil . _d___‘:‘:_:. 'h.._____.__,_..f'
.-._.I"
Client Sarver ndex. htmil
— |,
™~ 4. Data é—_"a._______,_..a'

3. Data

* |t defines an astonishingly simple behavior:
* Receives a packet with a web page request
e Retrieves the web page from disk
* Sends back the page

Example: web service

However:

* Many requests involve data and computations

— Think about search engines, a request may involve deep
computations over large clusters of machines

 Multiple users issue requests at the same time
— These must be managed simultaneously

 The server uses caches to speed up

— Cache is shared among users, need for synchronized access
mechanisms

e Servers send to clients scripts for pages customization

— How does the client can protect itself from the execution of
third party code that may embed viruses/spyware?

Example: web service

However:

* Web sites need to be updated

— How to manage consistency with concurrent read
requests?

e Client and server may run at different speeds
— Need for speed decoupling

* Hardware supporting the web site may be updated

— How to take advantage of this without rewriting the web
server code?

OS Challenges

* Reliability
— Does the system do what it was designed to do?
— Availability
* What portion of the time is the system working?
 Mean Time To Failure (MTTF), Mean Time to Repair

* Security
— Can the system be compromised by an attacker?
— Privacy

e Data is accessible only to authorized users

* Both require very careful design and code

OS Challenges

compilers web servers source code control
® PO rta bi I ity databases word procassing
o FO I p rog rams: web browsers email

e Application programming \ Lorable /
interface (API)

e Abstract machine interface system call l

interface

— For the operating system / \

* Hardware abstraction layer

systerm kernel

* Pintos provides hardware-

. o . xBE ARM PowerPC
specific OS kernel routines

10Mbps 100Mbps/1Gbps Ethermet

802.11 a/b/gin 5CS) IDE

graphics accalerators LCD screens

OS Challenges

* Performance
— Latency/response time
* How long does an operation take to complete?
— Throughput
* How many operations can be done per unit of time?

— Overhead
 How much extra work is done by the OS?

— Fairness
* How equal is the performance received by different users?

— Predictability
* How consistent is the performance over time?

OS Adoption

* Adoption is beyond control of an OS
— Wide availability of applications
— Wide availability of HW supporting it

* Network effect
— App stores
— Example: Android model vs iPhone model

* Proprietary vs open systems

— Not a clear winner

OS History

KNS |:1'EI-_1]|’5] I'-.ﬁulg-::a [a0's)
= oy
ey - -,

M5/ DO (FOs] 'n"l".."li [f0's) LII"-IIf[?I:]-'E.] *

/ "
i VMware

Wind [807%) I BSDUNIX (80%5) fdach (80}
! P e
R .I| -. . - ‘ - -

Windows Windows Free Liru MEXT Mac05

Mobile NT [90's) B30 (9075 - pres.] \/

.ﬂ.n-:lr-.'.'nu:l MEIE'D‘E X

Y

Windowes 8 (2012) ||;]5

Influence

Descendant

Computer Performance Over Time

| =] 1HHE 2011 facton
MIPS | M Lo LK
MIPS/S 3 L) 15 S0 210,50 M
DHAN ey L E | 250 H TEBE L
Drisk 1OMEB 1GE ITE LU
Home Inter- o .. 20 . :
e 06 Bl Kbps o Mbpe S
LAN network 3 Mhypa L) Blbsps | Gihps AL

[sharesd |

Usars g
SElS pet 100 1 = LI
eraclibne

Early Operating Systems:
Computers Very Expensive

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

e Batch systems
— Keep CPU busy by having a queue of jobs

— OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

Single task systems

e Sequential execution

13 14 15 16 17 18 19

27

23 24 25 26

21 12

20

2 3 4 5 6 7 8 910 1 12

1

Early batch systems

 SPOOL: Simultaneous Peripheral Operation

On-Line
| disk |

]

_ .
rard reader CPU & memory printer

Multi-programmed batch systems

* multi-user system: several
programs loaded in memory

at the same time
* Spool optimization

* Resource optimization

(processor, memory, devices)

— Response time not important

Operating system

Program 1

Program 2

Program 3

Multi-tasking vs single-task

SH [P e p——

15 19

27

23 24 25 26

22

0 21

I 12 13 14 15 16 17

9 10

- S

- T T

o - -

— i

T

IIIIIIII Th=-==-

IIIIIIII #= —— —

e e o M e e il [e

- —

—— e — ——

-----*----

P;

Time-Sharing Operating Systems:
Computers and People Expensive

 Multiple users on computer at same time

— Multiprogramming: run multiple programs at
same time

— Interactive performance: try to complete
everyone’s tasks quickly

— As computers became cheaper, more important to
optimize for user time, not computer time

Time-Sharing Operating Systems

* time sharing v.s. multitasking

Pl
J— e— " — -
P3
Multi tasking systems
Pl e e e e e sees sees s——
P e—— e o oo s e s —
P, — — — — — — — —

Time sharing systems (QdT ==)

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Web servers
Laptops

Tablets

Virtual machines

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per
computer

Increasing numbers of computers per user
Very large scale storage

Bonus Thought Question

* How should an operating system allocate
processing time between competing uses?
— Give the CPU to the first to arrive?

— To the one that needs the least resources to
complete? To the one that needs the most
resources?

— What if you need to allocate memory?
— Disk?

Textbook

* Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each chapter
once we've covered the corresponding
material... more of it will make sense then.
Don't save this re-reading until right before
the mid-term or final — keep up.”

