Concurrency

Motivation

Operating systems need to be able to handle multiple
things at once (MTAO)

— processes, interrupts, background system maintenance
Servers need to handle MTAO

— Multiple connections handled simultaneously

Parallel programs need to handle MTAO

— To achieve better performance

Programs with user interfaces often need to handle MTAO
— To achieve user responsiveness while doing computation

Network and disk bound programs need to handle MTAO
— To hide network/disk latency

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

* Protection is an orthogonal concept
— Can have one or many threads per protection domain

— Single threaded user program: one thread, one
protection domain

— Multi-threaded user program: multiple threads,
sharing same data structures, isolated from other user
processes

— Multi-threaded kernel: multiple threads, sharing
kernel data structures, capable of using privileged
instructions

Thread Abstraction

* |Infinite number of processors
* Threads execute with variable speed

— Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality
Fr- T I T T i el
Threa-:lmal";..(‘:‘;,‘i..'al |S|5|355
o DL L T S L T S S S
I | | | | I I I |
Pmcesmm'm:m: Fm | | 'm:ﬁ:
23,405, | a2,
Running Ready
Threads Threads

Programmer vs. Processor View

Programmers
View

X=X+ 1,
Yy=Y¥+X
Z=X+5Y,;

Possible Possible Possible
Execution Execution Execution
£1 g2 #3
K=x+1 K=X+ 1 K=¥+ 1
V=Y+XE 0 e . Y=Y+ X

Z=x+5y; threadissuspended ... i
other thread(s) run thread is suspended
thread is resumed other thread(s) run

R thread is resumed
Y=y +X et
Z=X+ 5y Z=X+ by

Possible Executions

Thread 1 T___] Thread 1 |
Thread 2 —] Thread 2 |
Thread 3 C—J Thread3 |
al One execution bl Another execution
Thread 1) O OO

Thread2 [0O _D_D
Thread 3 [)

c) Another execution

Thread Operations

sthread_fork(func, args)
— Create a new thread to run func(args)
— Pintos: thread_create
sthread_yield()
— Relinquish processor voluntarily
— Pintos: thread_yield
sthread_join(thread)
— In parent, wait for forked thread to exit, then return
— Pintos: tbd (see section)
sthread exit

— Quit thread and clean up, wake up joiner if any
— Pintos: thread_exit

Main: Fork 10 threads
call join on them, then exit

bash-3.2$./threadHello

° What Other Hello from thread 0

Hello from thread 1
1 1 Thread 0 returned 100
|nter|eaV|ngS are Hello from thread 3
Hello from thread 4

pOSSIb|€? Thread 1 returned 101

Hello from thread 5
. Hello from thread

o
What IS Hello from thread
Hello from thread

maX|mum # Of Hello from thread

Hello from thread 9

1 Thread 2 returned 102
threads runnlng Thread returned 103
returned 104
returned 105
Thread returned 106
° AL ‘p Thread returned 107
thlr]er]lJrT]' Thread returned 108
Thread 9 returned 109

Main thread done.

~] 00 v

Thread

at same time? Thread

O~ oy n b= W

Thread Lifecycle

Scheduler
Resumes Thread

Thread Creation Thread Exit

Finished

2.0.,

sthread create ()

.g.,
sthread exit ()

1""———._.___,_.-—-""—--
Thread Yields/

Scheduler
Suspends Thread

e.g., sthread yield({)

Thread Waits for Event

e.d.,

sthread joini)

Event Occurs

e.g., other thread
calls

sthread join{)

Location of thread’s per thread state

State of thread Location of TCB Location of registers

INIT Being created TCB
READY Ready List TCB
RUNNING Running List Processor

Synchronization
WAITING Variable's Waiting List TCB
Finished List, then
FINISHED Deleted TCB

Implementing threads

* Thread fork(func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

e stub(func, args): Pintos switch_entry
— Call (*func)(args)
— Call thread_exit()

Shared vs. Per-Thread State

Shared Per—Thread Per—Thread
State State State
Thread Control Thread Control
Heap Block (TCB) Block (TCB)
""""" stack . stack
Information Information
Saved Saved
Global Registers Registers
Variables Thread | | Thread
Metadata Metadata
~ Stack ~ Stack
Code

Thread Stack

 What if a thread puts too many procedures on
its stack?

— What should happen?
— What happens in Java?

— What happens in Linux?

Roadmap

Threads can be implemented in any of several

ways

— Multiple user-level threads, inside a UNIX process
(early Java)

— Multiple single-threaded processes (early UNIX)

— Mixture of single and multi-threaded processes
and kernel threads (Linux, MacQOS, Windows)

* To the kernel, a kernel thread and a single threaded
user process look quite similar

— Scheduler activations (Windows)

Processes and Threads representation

Process Control Block (PCB)
— Data structure associated to each process

Process Table
— Contains all PCBs
— In the kernel, one for the entire system

Thread Control Block (TCB)
— One for each thread

Thread Table

— One for each process (user-level threads)

— In the kernel, one for the entire system (kernel-level
threads)

TCB & PCB

* PCB: * TCB:
— Process name (PID) — Thread ID
— Assigned memory — State
— Other resources — Context of the thread
* Devices, open files, ... — Scheduling
— Handlers to the parameters
process’ threads — Reference to the

— .. stack

User-level threads

Threads implemented by means of a user-level
library

O.S. not aware of user level threads
Thread table within each process

Scheduling of the threads implemented by the
run time support of the process

— Threads can use thread _yield() to release the
processor

An invocation to a blocking system call blocks all
the threads

User-level threads

gt St3

text

T1\ N2 \ T3
Thread

RTS table

User
mode

Process table m rlfweordn: |

User-level threads

Pros:

* Creation, termination and context switch very efficient

— Do not need system call invocations, just calls to the thread
library

— In case of context switch the addressing space remains the same

* Can be implemented on any O.S. that does not supports
multithreading

— e.g. early versions of UNIX
Cons:

* Blocking system calls block all the user-level threads of a
process

* Do not take advantage of multiprocessors architectures
— All threads of a process are scheduled on the same processor

Kernel-level threads

 Threads implemented in the kernel
— Thread table in the kernel

— Creation, termination and context switch activated
by system calls

— Different thread of the same process can run in
parallel on different processors

Kernel-level threads

User
mode

Thead SN oo

Kernel-level threads

* Operations on threads and interactions among
threads by means of system calls

— More overhead w.r.t user-level threads
* Thread scheduling implemented by the O.S.

* Threads can invoke blocking system calls
— Only the invoker gets blocked

Threads in a Process

Threads are useful at user-level
— Parallelism, hide 1/0 latency, interactivity

Option A (early Java): user-level library, within a single-threaded
process

— Library does thread context switch

— Kernel time slices between processes, e.g., on system call I/O
Option B (Linux, MacOS, Windows): use kernel threads

— System calls for thread fork, join, exit (and lock, unlock,...)

— Kernel does context switching

— Simple, but a lot of transitions between user and kernel mode
Option C (Windows): scheduler activations

— Kernel allocates processors to user-level library

— Thread library implements context switch

— System call I/O that blocks triggers upcall

Option D: Asynchronous |/O

Thread switch

* Two causes:
— Voluntary
— Due to an interrupt/exception
* Almost the same management for the
different cases
— Kernel/user threads
— Multithread/singlethread processes

Implementing (voluntary) thread
context switch

* User-level threads in a single-threaded process
— Save registers on old TCB
— Switch to new stack, new thread
— Restore registers from new thread’s TCB
— Return

e Kernel threads

— Exactly the same!

— Pintos: thread switch always between kernel threads,
not between user process and kernel thread

Pintos: switch threads (oldT, nextT)
(interrupts disabled!)

Save caller’s register state
NOTE: %eax, etc. are ephemeral

This stack frame must match the
one set up by thread_create()

pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
mov!| SWITCH_NEXT(%esp), %ecx
mov! (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

Two threads call yield

Thread 1= instructions

call thread yedd

gave giate to stack
gayve giate to TCB
chaoase anather thread
load other thread siate

return thread _yield
call thread yiadd

gave giate to stack
gave giate to TCEB
chaase anather thread
load ather thread state

return theead _yield

Thread Z's instructions

call thread yield

save slate to stack
save state to TCB
choose another thread
laad other thread state

raturn thread yeid
call threed vield

save slate to stack
save state to TCB
choose another thread
laad other thread state

Processors inatructions

call threed yiaeld

save state 1o stack
save state to TCB
choose another thread
kzad other thread state
call thresd_yiald

save state to stack
save state 1o TCB
choose another thread
oad other thread state
raturn thread yield
call thregd yield

save stale 1o stack
save state to TCB
choosa another thread
kzad other thread state

requrn thread yeedo
call thresd_yield

save state to stack
save state 1o TCB
choose another thread
aad other thread state
refurn thread yield

Thread switch on an interrupt

 Thread switch can occur due to timer or 1I/O
interrupt

— Tells OS some other thread should run
e Simple version (Pintos)
— End of interrupt handler calls switch_threads()

— When resumed, return from handler resumes kernel
thread or user process

e Faster version (textbook)

— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Thread switch

Save registers (context) of the old thread in
the TCB

Move old thread’s TCB to Ready List or to a
Waiting List

Select a new thread from the Ready List

Restores new thread’s registers from TCB to
Orocessor

Put new thread’s TCB in the Running List
return control to the new thread (IRET)

Thread switch - overhead

Due to registers save and restore
Due to TCB queues management

Memory cache invalidation
— link to the computer architecture class

Induced operations on the memory manager
— Address exceptions
— Page faults

— MMU invalidation
 Will be discussed later on

Context switch - example

Let us consider a processor with special registers PC & PS, the user-level stack pointer SP, the
kernel level stack pointer SP” and general registers R1, R2

The interrupt vector is in memory

The system uses a single kernel stack (shared for all threads)

When receives an interrupt, the processor:

. Sets kernel mode;

. Disable interrupts;

. Saves PC & PS & SP on the kernel stack

. Loads the new PC & PS from the interrupt vector

- Consequently jumps to the interrupt handler in the kernel
The IRET instruction:

. Enableinterrupts;

. Sets user mode;

. Restores PC, PS & SP from the kernel stack; (consequently jumps back to the adress at
which the RUNNING thread ad been interrupted in the past)

Hardware

The interrupt handler:
* First saves the general registers on the kernel stack Software
 atthe end restores the general registers from the kernel stack and executes IRET

Context switch —example 1

Hyp. A): thread T1 invokes a system call. At the end it remains
in RUNNING state

1) Initial situation during the execution of SVC instruction (USER MODE)

registers
PC 1880
PS 16F2
SP 2880
R1 4500
R2 CD31

TCBT1
State Running
PC 7?77
PS 16F2
SP 77?7
R1 7?77
R2 27?77
address 5000
PS AA45

TCB T2 kernel stack
State Ready OFFF
PC A12C 1000
PS 16F2 1001
SP A275 1002
R1 25CC 1003
R2 FO12 1004
kernel SP OFFF

interrupt vector

Context switch - example

1) Initial situation during the execution of SVC instruction (USER MODE)

TCBT1 TCB T2 kernel stack registers

State Running State Ready OFFF PC 1880
PC 27?77 PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP 2777 SP A275 1002 R1 4500
R1 2777 R1 25CC 1003 R2 CD31
R2 ??77? R2 FO12 1004

address 5000 base kernel SP OFFF
PS AAA45
interrupt vector

2) Afterinterrupt (KERNEL MODE)

TCBT1 TCB T2 kernel stack registers

State Running State Ready OFFF 1880 PC 5000
PC 2777 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP 27?77 SP A275 1002 R1 4500
R1 27?77 R1 25CC 1003 R2 CD31
R2 2777 R2 FO12 1004

address 5000 base kernel SP OFFF
PS AA45
interrupt vector

Context switch - example

2) Afterinterrupt (KERNEL MODE)

TCBT1 TCB T2 kernel stack
State Running State Ready OFFF | 1880
PC ?7?7?7? PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP 77?7 SP A275 1002
R1 ?7?7?7? R1 25CC 1003
R2 ?7?7?7? R2 FO12 1004

3) after temporary storage of registers (KERNEL MODE)

TCBT1 TCB T2 kernel stack
OFFF | 1880
State Running State Ready

PC ?7?7?7? PC A12C 1000 | 16F2

PS 16F2 PS 16F2 1001 | 2880

SP ?7977 SP A275 1002 | 4500

R1 27?77 R1 25CC 1003 | CD31

R2 ?7?7?7? R2 FO12 1004

registers
PC 5000
PS AA45
SP 1002
R1 4500
R2 CD31

registers
PC |[5000 +

?7?

PS AA45
SP 1004
R1 ?7?
R2 ?7?

Context switch - example

registers

PC |5000 +
?7?

PS AA45
SP 1004
R1 ?7?
R2 ?7?

registers
PC 5100
PS AA45
SP 1002
R1 4500
R2 CD31

4) atthe end of the primitive (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | 1880
State Running State Ready
PC 2777 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP 27977 SP A275 1002 | 4500
R1 27977 R1 25CC 1003 | CD31
R2 27?77 R2 FO12 1004
5) during extraction of IRET at address 5100 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
State Running State Ready OFFF | 1880
PC 27977 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP 2777 SP A275 1002
R1 2777 R1 25CC 1003
R2 27?77 R2 FO12 1004

Context switch - example

5) during extraction of IRET at address 5100 (KERNEL MODE)

TCBT1 TCB T2 kernel stack registers
State Running State Ready OFFF | 1880 PC 5100
PC P97 PC A12C 1000 | 16F2 PS AA45
PS 16F2 PS 16F2 1001 | 2880 SP 1002
SP ?7?77 SP A275 1002 R1 4500
R1 27?77 R1 25CC 1003 R2 CD31
R2 ??77 R2 FO12 1004

6) atthe end of IRET USER MODE)

TCBT1 TCB T2 kernel stack registers
State Running State Ready OFFF | 1880 PC 1880
PC ?7?77 PC A12C 1000 | 16F2 PS 16F2
PS 16F2 PS 16F2 1001 | 2880 SP 2880
SP P97 SP A275 1002 R1 4500
R1 ?7?7?7? R1 25CC 1003 R2 CD31
R2 ?7?7?7? R2 FO12 1004

Context switch — example 2

Hyp. B): thread T1 invokes a system call that switches T2 in
RUNNING state
1) Initial situation during the execution of SVC instruction (USER MODE)

TCBT1 TCB T2 kernel stack registers

State Running State Ready OFFF PC 1880
PC 77?7 PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP ?7?7?7? SP A275 1002 R1 4500
R1 7?77 R1 25CC 1003 R2 CD31
R2 7?77 R2 FO12 1004

address 5000 kernel SP OFFF

PS AA45
interrupt vector

Context switch - example

1) Initial situation during the execution of SVC instruction (USER MODE)

TCBT1 TCB T2 kernel stack registers

State Running State Ready OFFF PC 1880
PC 27?77 PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP 2777 SP A275 1002 R1 4500
R1 2777 R1 25CC 1003 R2 CD31
R2 ??77? R2 FO12 1004

address 5000 base kernel SP OFFF
PS AAA45
interrupt vector

2) Afterinterrupt (KERNEL MODE)

TCBT1 TCB T2 kernel stack registers

State Running State Ready OFFF 1880 PC 5000
PC 2777 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP 27?77 SP A275 1002 R1 4500
R1 27?77 R1 25CC 1003 R2 CD31
R2 2777 R2 FO12 1004

address 5000 base kernel SP OFFF
PS AA45
interrupt vector

Context switch - example

2) Afterinterrupt (KERNEL MODE)
TCBT1 TCB T2 kernel stack
State Running State Ready OFFF | 1880
PC ?7?7?7? PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP 7?77 SP A275 1002
R1 7?77 R1 25CC 1003
R2 7?77 R2 FO12 1004
3) After temporary storage of registers (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | 1880
State Running State Ready
PC 27?77 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP ?7?7?7 SP A275 1002 | 4500
R1 27?77 R1 25CC 1003 | CD31
R2 7?77 R2 FO12 1004

registers
PC 5000
PS AA45
SP 1002
R1 4500
R2 CD31

registers
PC |[5000 +

?7?

PS AA45
SP 1004
R1 ?7?
R2 ?7?

Context switch - example

registers
PC |5000 +
?7?
PS AA45
SP 1004
R1 ?7?
R2 ?7?

registers
PC |5000 +
?7?
PS AA45
SP 1004
R1 ?7?
R2 ?7?

3) After temporary storage of registers (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | 1880
State Running State Ready
PC 2777 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | 2880
SP 27977 SP A275 1002 | 4500
R1 27977 R1 25CC 1003 | CD31
R2 27?77 R2 FO12 1004
4) After storage of registers of T1 and restore of registers of T2 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | Al12C
State Waiting State Running
PC 1880 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | A275
SP 2880 SP A275 1002 | 25CC
R1 4500 R1 25CC 1003 | FO12
R2 CD31 R2 FO12 1004

Context switch - example

registers
PC |5000 +
?7?
PS AA45
SP 1004
R1 ?7?
R2 ?7?
registers
PC |5000 +
?7?
PS AA45
SP 1002
R1 25CC
R2 FO12

4) After storage of registers of T1 and restore of registers of T2 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | A12C
State Waiting State Running
PC 1880 PC Al12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | A275
SP 2880 SP A275 1002 | 25CC
R1 4500 R1 25CC 1003 | FO12
R2 CD31 R2 FO12 1004
5) During extraction of IRET at address 5100 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | A12C
State Waiting State Running
PC 1880 PC Al12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | A275
SP 2880 SP A275 1002
R1 4500 R1 25CC 1003
R2 CD31 R2 FO12 1004

Context switch - example

registers

PC |5000 +
27

PS AA45
SP 1002
R1 25CC
R2 FO12

registers
PC A12C
PS 16F2
SP A275
R1 4500
R2 CD31

5) During extraction of IRET at address 5100 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
OFFF | A12C
State Waiting State Running
PC 1880 PC A12C 1000 | 16F2
PS 16F2 PS 16F2 1001 | A275
SP 2880 SP A275 1002
R1 4500 R1 25CC 1003
R2 CD31 R2 FO12 1004
5) During extraction of IRET at address 5100 (KERNEL MODE)
TCBT1 TCB T2 kernel stack
State Waiting State Running OFFF
PC 1880 PC A12C 1000
PS 16F2 PS 16F2 1001
SP 2880 SP A275 1002
R1 4500 R1 25CC 1003
R2 CD31 R2 FO12 1004

