Computer architecture

A simplified model

Computers architecture

One (or several) CPU(s)

Main memory

A set of devices (peripherals)
Interrupts

Direct memory access

Peripherals

The CPU

* General registers

 State and control registers

— Program Counter (PC o IP)
— Stack Pointer (SP)
— Program Status register (PS)

Fetch-execution cycle

* |f there are pending interrupts and the
interrupts are enabled

— Manages the interrupt

e Else
— Loads the instruction at address PC
— Executes the instruction
— PC=PC+4 (*)
(*) assumes that the instruction occupies 4 bytes

A Model of a CPU

Branch Address

Select
PC

Mewr FC

Program
Counter

opcode

CPLU
Instructions
Fetch
Exec

The program status register

e Condition code

— Keeps the status of the last instruction (divide by
zero, overflow, carry etc.)

e CPU mode

— User mode VS kernel mode

* |Interrupt enable bit

The Kernel Abstraction

Challenge: Protection

e How do we execute code with restricted
privileges?

— Either because the code is buggy or if it might be
malicious

 Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested
yet

Main Points

* Process conce pt

— A process is an OS abstraction for executing a
program with limited privileges

* Dual-mode operation: user vs. kernel

— Kernel-mode: execute with complete privileges
— User-mode: execute with fewer privileges

e Safe control transfer
— How do we switch from one mode to the other?

adits

Process Concept

sOUrce
code

compiler

image

I/
Copy

sl

and
data

executable

instructions

perating System

machine
instructions

Data |Heap

Stack

machine
instructicns

Data

Heap

Stack

Procass

COperating System Kernel

Fhysical Memory

Process Concept

* Process: an instance of a program, running with
limited rights

— Process control block (PCB): the data structure the OS
uses to keep track of a process

— Process Table: contains all PCBs

— Two parts to a process:

* Thread: a sequence of instructions within a process
— Potentially many threads per process (for now 1:1)
— Thread aka lightweight process

* Address space: set of rights of a process

— Memory that the process can access

— Other permissions the process has (e.g., which procedure calls it
can make, what files it can access)

Program and process

* Program: sequence of instructions

 Process: a set of activities executed on a set of
CPUs

* Several processes can be activated on the
same program
— The processes execute the same code

— Each process executes the program on different
data and/or in different times

Process Control Block

Process name
— Can be the index of the PCB in the process table

Pointers to process threads
Assigned memory

Other resources
— Files, devices, etc...

Thought Experiment

* How can we implement execution with limited
privilege?
— Execute each program instruction in a simulator
— If the instruction is permitted, do the instruction
— Otherwise, stop the process
— Basic model in Javascript, ...

* How do we go faster?
— Run the unprivileged code directly on the CPU?

Hardware Support:
Dual-Mode Operation

* Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any I/O device,
read/write any disk sector, send/read any packet

* User mode

— Limited privileges

— Only those granted by the operating system kernel
* On the x86, mode stored in EFLAGS register

A CPU with Dual-Mode Operation

Branch Address

Mew PC | Program CPU

Handler Select Counter Instructions

PC FC Fetch

Exec

Mode |—

opcode

Hardware Support:
Dual-Mode Operation

Privileged instructions
— Available to kernel
— Not available to user code

Limits on memory accesses
— To prevent user code from overwriting the kernel

Timer
— To regain control from a user program in a loop

Safe way to switch from user mode to kernel
mode, and vice versa

Privileged instructions

 Examples?

 What should happen if a user program
attempts to execute a privileged instruction?

Memory Protection

Phiysical Memiory

INSTR DATA HEAP STACK

N —

Base | Bounds

Yes
; :I'n."lerm:nrg.r o .
Reference—} OK? 7 Continue
Mo

Exception

Towards Virtual Addresses

* Problems with base and bounds?

Virtual Addresses

* Translation done in hardware, using a table
* Table set up by operating system kernel

Translation Box

Physical Address

Va5

Virtual Address ok?

Physical

Processor Memory

o

! SE& EXCEphon

Imstruction fatch or data read write [untranslated]

Virtual Address Layout

* Plus shared code segments, dynamically linked
libraries, memory mapped files, ...

Virtual Addresses
{Process Layout)

CODE DATA HEAP STACK

CODE DATA HEAP | STACK

Phoysical Memory

Example: Corrected
(What Does this Do?)

int staticVar =0; // a static variable
main() {
int localVar = 0; // a procedure local variable

staticVar += 1; localVar += 1;

sleep(10); // sleep causes the program to wait for x seconds
printf ("static address: %x, value: %d\n", &staticVar, staticVar);
printf ("procedure local address: %x, value: %d\n", &localVar, localVar);

}

Produces:
static address: 5328, value: 1
procedure local address: ffffffe2, value: 1

Hardware Timer

 Hardware device that periodically interrupts
the processor

— Returns control to the kernel timer interrupt
handler

— Interrupt frequency set by the kernel
* Not by user code!

— Interrupts can be temporarily deferred
* Not by user code!
* Crucial for implementing mutual exclusion

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory. Why must
the screen’s buffer memory be protected?

Question

* Suppose we had a perfect object-oriented
language and compiler, so that only an
object’s methods could access the internal
data inside an object. If the operating system
only ran programs written in that language,
would it still need hardware memory address
protection?

Mode Switch

* From user-mode to kernel

— Interrupts
* Triggered by timer and I/O devices

— Exceptions
* Triggered by unexpected program behavior
* Or malicious behavior!

— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

e Only limited # of very carefully coded entry points

Mode Switch

* From kernel-mode to user

— New process/new thread start
* Jump to first instruction in program/thread

— Return from interrupt, exception, system call

* Resume suspended execution

— Process/thread context switch

* Resume some other process

— User-level upcall

* Asynchronous notification to user program

How do we take interrupts safely?

Interrupt vector

— Limited number of entry points into kernel
Kernel interrupt stack

— Handler works regardless of state of user code
Interrupt masking

— Handler is non-blocking
Atomic transfer of control

— Single instruction to change:
* Program counter
e Stack pointer
* Memory protection
e Kernel/user mode

Transparent restartable execution
— User program does not know interrupt occurred

Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events

Procassor
Register

——

Interrupt
Vactor

] E

‘;;-_,.

handleTimerdnterrupt{] |

;

handleDivideByZero(} |

;

handleSystemCalli) {

;

Interrupt Stack

* Per-processor, located in kernel (not user)
memory
— Usually a thread has both: kernel and user stack

* Why can’t interrupt handler run on the stack
of the interrupted user process?

Interrupt Stack

rumning

maemn

Lisar Stack

proci

prosCs

%

Kernel Stack

ready to run

maen

procl

procd

%

user CPU
state

wiaiting fior 'O
miain
procl
procd

E syscall

user CFL
state

gyscall
handler

VO driver
top half

Interrupt Masking

* |Interrupt handler runs with interrupts off
— Reenabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run

— If defer interrupts too long, can drop 1/0O events

— On x86

e CLI: disable interrrupts
e STI: enable interrupts
* Only applies to the current CPU

e Cf.implementing synchronization, chapter 5

Interrupt Handlers

* Non-blocking, run to completion

— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration
— Wake up other threads to do any real work
* Pintos: semaphore_up
* Rest of device driver runs as a kernel thread
— Queues work for interrupt handler
— (Sometimes) wait for interrupt to occur

Atomic Mode Transfer

* On interrupt (x86)
— Save current stack pointer
— Save current program counter

— Save current processor status word (condition
codes)

— Switch to kernel stack; put SP, PC, PSW on stack
— Switch to kernel mode

— Vector through interrupt table

— Interrupt handler saves registers it might clobber

Before

Usar-lewval

Reqist K |
S egisters erme
code: —| ss:ESP code:
,—Yé 1 CS.EP
foo '::I [EFLAGS har'll:"'E'”] -I
whilel...) { ather pusha
=%+l € registers: -
}!f =¥-4 EAX, EBY, .
]
Exception
stack: Stack

4\/

User-level
Process

codea:

foo {14
whibe{_] {
x=x+1;
¥y =y-4
]
}

stack:

During

Registers

55 ESP

C5: EIP

EFLAGS

other
reqisters:
EAX, EBX,

Kemel

code:

handler(} {
pusha

Exception
Stack

55

ESP

EFLAGS

Cs

EIF

Efror

Llsar-|enval
Process

code

foa (} |

wihiled..)
K=x+1;

y=y-2
]
]

stack:

Registars

After

55 ESP

5 EIF

)

EFLAGS

ather
registers:
EfX, ERX.

Kennel

cida:

handleri] {
pusha

]

Excaptiomn
Stack

55
ESP

EFLAGS

Cs

M —

BITar

all

registers)
55
E5F
5
EIP
EAX
EBX

At end of handler

 Handler restores saved registers

e Atomically return to interrupted
process/thread

— Restore program counter

— Restore program stack

— Restore processor status word/condition codes
— Switch to user mode

 |RET instruction

Interrupt management
a simple example

Initial state: interrupt ‘500’ occurs when executing instruction AOOO

Registri nella CPU

PC A000

PS PSW P
R1 AAAA
R2 BBBB

Memoria
programma P Interrupt Handler
100 Store
A000 istr. 1 104 General
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2996
FFF3 2997 500 100
FFF7 2998 504 PSW INT
FFFB 2999
IORRREEE [3000

1) Initial state

|Registri nella CPU |

PC A000
PS PWS P
R1 AAAA
R2 BBBB

|Registri nella CPU |

PC 100
PS PSW INT
R1 AAAA
R2 BBBB

| Memoria
programma P Interrupt Handler
l) 100 Store
A000 istr. 1 104 General
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2996
FFF3 2997 500 100
FFF7 2998 504 PSW INT
FFFB 2999
e [xx | 3000
2) Interrupt recognized after instruction AOOO
| Memoria
programma P Interrupt Handler
' ' - 100 Store
istr. 1 104 General
AOU%) istr. 2 108 Registers
A008| istr. 3 .
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984
FFF3 2988 500 100
FFF7 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX

2) Interrupt recognized after instruction AOOO

|Registri nella CPU

PC 100
PS PSW INT
R1 AAAA
R2 BBBB

Memoria

programma P

Interrupt Handler

3) Stores general registers

|Registri nella CPU

PC 112
PS PSW INT
R1 AAAA
R2 BBBB

100 Store
AOOO istr. 1 104 General
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984
FFF3 2988 500 100
FFF7 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX
| Memoria
programma P Interrupt Handler
| | 100 Store
104 General
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984 BBBB
FFF3 2988 AAAA 500 100
FFF7 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX

4) Executes interrupt handler

|Registri nella CPU |

PC 200
PS PSW INT
R1 ??

R2 ??

5) Restores general registers

|Registri nella CPU |

PC 208
PS PSW INT
R1 AAAA
R2 BBBB

| Memoria
programma P Interrupt Handler
' ' 100 Store
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984 BBBB
FFF3 2988 AAAA 500 100
FFF7 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX
| Memoria
programma P Interrupt Handler
' ' 100 Store
08| Genera
A004 istr. 2 108 Registers
A008 istr. 3
A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984
FFF3 2988 500 100
s 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX

5) Restores general registers

|Registri nella CPU | | Memoria
programma P Interrupt Handler
PC 208 100 Store
PS PSW INT A000 istr. 1 104 General
| s [2992 | A004 istr. 2 108 Registers
R1 AAAA A008 istr. 3
R2 BBBB A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984
FFF3 2988 500 100
FFF7 2992 A000 504 PSW INT
FFFB 2996 PSW P
FFFF 3000 XXX
6) Executes IRET
|Registri nella CPU | Memoria
programma P Interrupt Handler
PC A004 S— 100 Store
PS PSW IP A000 istr. 1 104 General
_ — A004 istr. 2 108 Registers
R1 AAAA A008 istr. 3
R2 BBBB A016 istr. 4 200 Restores
A020 istr. 5 204 Registers
208 IRET
Stack di P stack nel nucleo
Interrupt Vector
FFFO 2984
FFF3 2988 500 100
FFF7 2992 504 PSW INT
FFFB 2996
FFFF 3000 XXX

System Calls

User Program

maim (}

syscalllarg1, argl);

o

LIser S5tub

syscall {argl, arg2) [
trap
return

t

(2]
Hardware Trap
Sy
&
v
"l..__-
Trap Return
(5]

Kernal

syscall(arg1, arg2) {

do operation

]
H]T i/[*’rl

Kernel 5tub

handlert{) {

copy argumenits
from user memaory

check argurmeants

swscalliarg1, argl);

copy return value
Into user memaory

return

Kernel System Call Handler

Locate arguments
— In registers or on user(!) stack

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back
— Into user memory

Web Server Example

Seruer request reply
4. parse request
huffer pa q 9. format reply huffar
1. neh'-.'nrkfm 10. metwork 5 file T
sockat 3. kernel cockat read 8. kernel
read copy wWrite Copy
Kemel
'y R o
11. kernel copy
from user buffer
into metwork buffer
AT AT
. 12. format cutgoing f. disk :
2. copy arriving nacket and DMA raquest £ disk
packet (DMA) data [DMA)
Hardware
N L

Metwork Interface

Disk Interface

Booting

Dizk

bootloader
05 kernel
legin app

(11 BIOS copies
bootloader

[2} bootloader
copies 05 131 05 kernel
kerneal copies login
application
bootloader 05 kernel le=gin app
BIOS |instructions instructions instructions
and data and data and data

Fhysical Memory

Guest/Host
User Mode

Host User
Mode/ Guest

Kernel Mode

Host Kernel
dode

Virtual Machine

Guest Guest
Pracess Frocess
- guest
syscall e programnm
— counter
Guest Kernel
timer
guest PC guest guest file system quEst handler
guest 5P EIEEFF'"U" and Futher kernel ""'Tt':“"'-'l':'_t syscall
guest flags Shan SEMICES LoLel2 handler
Host Kernel
hiost host Smer
hiost PC handler
— ' Wirtual :
hiost 5P E':"":Eftmn Dhisk mttirrup_t syscall
hiost flags] L=l = handler
Physical
Hardware W

Crisk

User-Level Virtual Machine

e How does VM Player work?
— Runs as a user-level application

— How does it catch privileged instructions, interrupts,
device /0, ...

* Installs kernel driver, transparent to host kernel
— Requires administrator privileges!
— Modifies interrupt table to redirect to kernel VM code
— If interrupt is for VM, upcall

— If interrupt is for another process, reinstalls interrupt
table and resumes kernel

Upcall: User-level interrupt

* AKA UNIX signal

— Notify user process of event that needs to be handled
right away
* Time-slice for user-level thread manager
* Interrupt delivery for VM player

* Direct analogue of kernel interrupts
— Signal handlers — fixed entry points
— Separate signal stack
— Automatic save/restore registers — transparent resume
— Signal masking: signals disabled while in signal handler

Upcall: Before

—— O 3 COunter _ _
- signal_handler(] {
K=Y+ 2 .

. -~ stack pointer ;

Signal Stack
stack:

Upcall: After

program counter—-

“—— signal_handler() |

=Yy +Z;

stack pointer)
Signal Stack
stack:
k i FL
S *-'~'=
[saved

registers

