
Operating Systems:
Principles and Practice

Main Points

• Operating system definition

– Software to manage a computer’s resources for its
users and applications

• OS challenges

– Reliability, security, responsiveness, portability, …

• OS history

– How are OS X, Windows 7, and Linux related?

What is an operating system?

• Software to
manage a
computer’s
resources for
its users and
applications

Operating System Roles

• Referee:
– Resource allocation among users, applications
– Isolation of different users, applications from each other
– Communication between users, applications

• Illusionist
– Each application appears to have the entire machine to

itself
– Infinite number of processors, (near) infinite amount of

memory, reliable storage, reliable network transport

• Glue
– Provide common, standard services to applications
– Simplifies application developement
– Libraries, user interface widgets, …

Operating system design patterns

• Cloud computing
– Referee: how to allocate resources between competing

applications in the cloud?
– Illusionist: computing resources in a cloud evolve continuously,

how to isolate applications from this evolution?
– Glue: how to provide common, standardized access to the cloud

services?

• Web services
– Referee: ensure responsiveness when multiple tabs are opened

at the same time
– Illusionist: web services are geographically distributed for fault

tolerance. Mask server failures to the users.
– Glue: how does a browser achieve portable execution of scripts

across different OS and HW platforms?

Operating system design patterns

• Multi-user database systems
– Referee: how to enforce data access and privacy to

different users ?
– Illusionist: how to mask failures so that data remains

consistent and available to users?
– Glue: what common services to programs development?

• Internet
– Referee: guarantee differentiated services to users and

protect against DoS, spam, phishing etc…
– Illusionist: internet appears as a unique, world-wide

network but it is not!
– Glue: internet protocols make applications independent of

the underlying network architecture

Example: web service

• It defines an astonishingly simple behavior:

• Receives a packet with a web page request

• Retrieves the web page from disk

• Sends back the page

Example: web service

However:
• Many requests involve data and computations

– Think about search engines, a request may involve deep
computations over large clusters of machines

• Multiple users issue requests at the same time
– These must be managed simultaneously

• The server uses caches to speed up
– Cache is shared among users, need for synchronized access

mechanisms

• Servers send to clients scripts for pages customization
– How does the client can protect itself from the execution of

third party code that may embed viruses/spyware?

Example: web service

However:

• Web sites need to be updated

– How to manage consistency with concurrent read
requests?

• Client and server may run at different speeds

– Need for speed decoupling

• Hardware supporting the web site may be updated

– How to take advantage of this without rewriting the web
server code?

OS Challenges

• Reliability
– Does the system do what it was designed to do?

– Availability
• What portion of the time is the system working?

• Mean Time To Failure (MTTF), Mean Time to Repair

• Security
– Can the system be compromised by an attacker?

– Privacy
• Data is accessible only to authorized users

• Both require very careful design and code

OS Challenges

• Portability

– For programs:

• Application programming
interface (API)

• Abstract machine interface

– For the operating system

• Hardware abstraction layer

• Pintos provides hardware-
specific OS kernel routines

OS Challenges

• Performance
– Latency/response time

• How long does an operation take to complete?

– Throughput
• How many operations can be done per unit of time?

– Overhead
• How much extra work is done by the OS?

– Fairness
• How equal is the performance received by different users?

– Predictability
• How consistent is the performance over time?

OS Adoption

• Adoption is beyond control of an OS

– Wide availability of applications

– Wide availability of HW supporting it

• Network effect

– App stores

– Example: Android model vs iPhone model

• Proprietary vs open systems

– Not a clear winner

OS History

Computer Performance Over Time

Early Operating Systems:
Computers Very Expensive

• One application at a time

– Had complete control of hardware

– OS was runtime library

– Users would stand in line to use the computer

• Batch systems

– Keep CPU busy by having a queue of jobs

– OS would load next job while current one runs

– Users would submit jobs, and wait, and wait, and

Single task systems

• Sequential execution

Early batch systems

• SPOOL: Simultaneous Peripheral Operation
On-Line

disk

CPU & memory printer card reader

Multi-programmed batch systems

• multi-user system: several

programs loaded in memory

at the same time

• Spool optimization

• Resource optimization

(processor, memory, devices)

– Response time not important

Operating system

Program 2

Program 3

Program 1

Multi-tasking vs single-task

Time-Sharing Operating Systems:
Computers and People Expensive

• Multiple users on computer at same time

– Multiprogramming: run multiple programs at
same time

– Interactive performance: try to complete
everyone’s tasks quickly

– As computers became cheaper, more important to
optimize for user time, not computer time

Time-Sharing Operating Systems

• time sharing v.s. multitasking

Multi tasking systems

P1

P2
P3

Time sharing systems (QdT)

P1

P2
P3

Today’s Operating Systems:
Computers Cheap

• Smartphones

• Embedded systems

• Web servers

• Laptops

• Tablets

• Virtual machines

• …

Tomorrow’s Operating Systems

• Giant-scale data centers

• Increasing numbers of processors per
computer

• Increasing numbers of computers per user

• Very large scale storage

Bonus Thought Question

• How should an operating system allocate
processing time between competing uses?

– Give the CPU to the first to arrive?

– To the one that needs the least resources to
complete? To the one that needs the most
resources?

– What if you need to allocate memory?

– Disk?

Textbook

• Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each chapter
once we've covered the corresponding
material… more of it will make sense then.
Don't save this re-reading until right before
the mid-term or final – keep up.”

