
Concurrency

Motivation

• Operating systems need to be able to handle multiple
things at once (MTAO)
– processes, interrupts, background system maintenance

• Servers need to handle MTAO
– Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
– To achieve better performance

• Programs with user interfaces often need to handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs need to handle MTAO
– To hide network/disk latency

Definitions

• A thread is a single execution sequence that
represents a separately schedulable task

• Protection is an orthogonal concept
– Can have one or many threads per protection domain
– Single threaded user program: one thread, one

protection domain
– Multi-threaded user program: multiple threads,

sharing same data structures, isolated from other user
processes

– Multi-threaded kernel: multiple threads, sharing
kernel data structures, capable of using privileged
instructions

Thread Abstraction

• Infinite number of processors

• Threads execute with variable speed

– Programs must be designed to work with any schedule

Programmer vs. Processor View

Possible Executions

Thread Operations

• sthread_fork(func, args)
– Create a new thread to run func(args)
– Pintos: thread_create

• sthread_yield()
– Relinquish processor voluntarily
– Pintos: thread_yield

• sthread_join(thread)
– In parent, wait for forked thread to exit, then return
– Pintos: tbd (see section)

• sthread_exit
– Quit thread and clean up, wake up joiner if any
– Pintos: thread_exit

Main: Fork 10 threads
call join on them, then exit

• What other
interleavings are
possible?

• What is
maximum # of
threads running
at same time?

• Minimum?

Thread Lifecycle

Location of thread’s per thread state

State of thread Location of TCB Location of registers

INIT Being created TCB

READY Ready List TCB

RUNNING Running List Processor

WAITING
Synchronization

Variable's Waiting List TCB

FINISHED
Finished List, then

Deleted TCB

Implementing threads

• Thread_fork(func, args)
– Allocate thread control block

– Allocate stack

– Build stack frame for base of stack (stub)

– Put func, args on stack

– Put thread on ready list

– Will run sometime later (maybe right away!)

• stub(func, args): Pintos switch_entry
– Call (*func)(args)

– Call thread_exit()

Shared vs. Per-Thread State

Thread Stack

• What if a thread puts too many procedures on
its stack?

– What should happen?

– What happens in Java?

– What happens in Linux?

Roadmap

• Threads can be implemented in any of several
ways
– Multiple user-level threads, inside a UNIX process

(early Java)

– Multiple single-threaded processes (early UNIX)

– Mixture of single and multi-threaded processes
and kernel threads (Linux, MacOS, Windows)
• To the kernel, a kernel thread and a single threaded

user process look quite similar

– Scheduler activations (Windows)

Processes and Threads representation

• Process Control Block (PCB)
– Data structure associated to each process

• Process Table
– Contains all PCBs
– In the kernel, one for the entire system

• Thread Control Block (TCB)
– One for each thread

• Thread Table
– One for each process (user-level threads)
– In the kernel, one for the entire system (kernel-level

threads)

TCB & PCB

• PCB:

– Process name (PID)

– Assigned memory

– Other resources

• Devices, open files, …

– Handlers to the
process’ threads

– …

• TCB:

– Thread ID

– State

– Context of the thread

– Scheduling
parameters

– Reference to the
stack

– …

User-level threads

• Threads implemented by means of a user-level
library

• O.S. not aware of user level threads
• Thread table within each process
• Scheduling of the threads implemented by the

run time support of the process
– Threads can use thread_yield() to release the

processor

• An invocation to a blocking system call blocks all
the threads

User-level threads

User

mode

text

data

T1 T3 T2

St1
St2 St3

Thread

table

Kernel

mode Process table

RTS

User-level threads

Pros:
• Creation, termination and context switch very efficient

– Do not need system call invocations, just calls to the thread
library

– In case of context switch the addressing space remains the same

• Can be implemented on any O.S. that does not supports
multithreading
– e.g. early versions of UNIX

Cons:
• Blocking system calls block all the user-level threads of a

process
• Do not take advantage of multiprocessors architectures

– All threads of a process are scheduled on the same processor

Kernel-level threads

• Threads implemented in the kernel

– Thread table in the kernel

– Creation, termination and context switch activated
by system calls

– Different thread of the same process can run in
parallel on different processors

Kernel-level threads

User

mode

text

data

T1 T3 T2

St1
St2 St3

Kernel

mode
Process

table
Thread

table

Kernel-level threads

• Operations on threads and interactions among
threads by means of system calls

– More overhead w.r.t user-level threads

• Thread scheduling implemented by the O.S.

• Threads can invoke blocking system calls

– Only the invoker gets blocked

Threads in a Process

• Threads are useful at user-level
– Parallelism, hide I/O latency, interactivity

• Option A (early Java): user-level library, within a single-threaded
process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call I/O

• Option B (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel mode

• Option C (Windows): scheduler activations
– Kernel allocates processors to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D: Asynchronous I/O

Thread switch

• Two causes:

– Voluntary

– Due to an interrupt/exception

• Almost the same management for the
different cases

– Kernel/user threads

– Multithread/singlethread processes

Implementing (voluntary) thread
context switch

• User-level threads in a single-threaded process

– Save registers on old TCB

– Switch to new stack, new thread

– Restore registers from new thread’s TCB

– Return

• Kernel threads

– Exactly the same!

– Pintos: thread switch always between kernel threads,
not between user process and kernel thread

Pintos: switch_threads (oldT, nextT)
(interrupts disabled!)

Save caller’s register state
NOTE: %eax, etc. are ephemeral
This stack frame must match the

one set up by thread_create()
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx
Save current stack pointer to old

thread's stack, if any.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi
popl %esi
popl %ebp
popl %ebx
ret

Two threads call yield

Thread switch on an interrupt

• Thread switch can occur due to timer or I/O
interrupt
– Tells OS some other thread should run

• Simple version (Pintos)
– End of interrupt handler calls switch_threads()

– When resumed, return from handler resumes kernel
thread or user process

• Faster version (textbook)
– Interrupt handler returns to saved state in TCB

– Could be kernel thread or user process

Thread switch

• Save registers (context) of the old thread in
the TCB

• Move old thread’s TCB to Ready List or to a
Waiting List

• Select a new thread from the Ready List

• Restores new thread’s registers from TCB to
processor

• Put new thread’s TCB in the Running List

• return control to the new thread (IRET)

Thread switch - overhead

• Due to registers save and restore

• Due to TCB queues management

• Memory cache invalidation
– link to the computer architecture class

• Induced operations on the memory manager
– Address exceptions

– Page faults

– MMU invalidation
• Will be discussed later on

Software

Hardware

Let us consider a processor with special registers PC & PS, the user-level stack pointer SP, the
kernel level stack pointer SP’ and general registers R1, R2
The interrupt vector is in memory
The system uses a single kernel stack (shared for all threads)
When receives an interrupt, the processor:
• Sets kernel mode;
• Disable interrupts;
• Saves PC & PS & SP on the kernel stack
• Loads the new PC & PS from the interrupt vector
– Consequently jumps to the interrupt handler in the kernel

The IRET instruction:
• Enableinterrupts;
• Sets user mode;
• Restores PC, PS & SP from the kernel stack; (consequently jumps back to the adress at
which the RUNNING thread ad been interrupted in the past)

The interrupt handler:
• First saves the general registers on the kernel stack
• at the end restores the general registers from the kernel stack and executes IRET

Context switch - example

Context switch – example 1

Hyp. A): thread T1 invokes a system call. At the end it remains
in RUNNING state

1) Initial situation during the execution of SVC instruction (USER MODE)

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF PC 1880

PC ???? PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 kernel SP 0FFF
PS AA45
interrupt vector

Context switch - example
1) Initial situation during the execution of SVC instruction (USER MODE)

2) After interrupt (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF PC 1880

PC ???? PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 base kernel SP 0FFF
PS AA45

interrupt vector

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF 1880 PC 5000

PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 base kernel SP 0FFF
PS AA45

interrupt vector

Context switch - example

3) after temporary storage of registers (KERNEL MODE)

2) After interrupt (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Running State Ready 0FFF 1880 PC 5000
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

TCB T1 TCB T2 kernel stack registers

State Running State Ready
 0FFF 1880 PC 5000 +

??
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1004
SP ???? SP A275 1002 4500 R1 ??
R1 ???? R1 25CC 1003 CD31 R2 ??
R2 ???? R2 F012 1004

Context switch - example

5) during extraction of IRET at address 5100 (KERNEL MODE)

4) at the end of the primitive (KERNEL MODE)

 TCB T1 TCB T2 kernel stack registers

State Running State Ready
 0FFF 1880 PC 5000 +

??
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1004
SP ???? SP A275 1002 4500 R1 ??
R1 ???? R1 25CC 1003 CD31 R2 ??
R2 ???? R2 F012 1004

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF 1880 PC 5100

PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

Context switch - example

6) at the end of IRET USER MODE)

5) during extraction of IRET at address 5100 (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Running State Ready 0FFF 1880 PC 5100
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF 1880 PC 1880

PC ???? PC A12C 1000 16F2 PS 16F2
PS 16F2 PS 16F2 1001 2880 SP 2880
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

Context switch – example 2

Hyp. B): thread T1 invokes a system call that switches T2 in
RUNNING state

1) Initial situation during the execution of SVC instruction (USER MODE)

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF PC 1880

PC ???? PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 kernel SP 0FFF
PS AA45
interrupt vector

Context switch - example
1) Initial situation during the execution of SVC instruction (USER MODE)

2) After interrupt (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF PC 1880

PC ???? PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP 2880
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 base kernel SP 0FFF
PS AA45

interrupt vector

TCB T1 TCB T2 kernel stack registers
State Running State Ready 0FFF 1880 PC 5000

PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

address 5000 base kernel SP 0FFF
PS AA45

interrupt vector

Context switch - example

3) After temporary storage of registers (KERNEL MODE)

2) After interrupt (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Running State Ready 0FFF 1880 PC 5000
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1002
SP ???? SP A275 1002 R1 4500
R1 ???? R1 25CC 1003 R2 CD31
R2 ???? R2 F012 1004

TCB T1 TCB T2 kernel stack registers

State Running State Ready
 0FFF 1880 PC 5000 +

??
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1004
SP ???? SP A275 1002 4500 R1 ??
R1 ???? R1 25CC 1003 CD31 R2 ??
R2 ???? R2 F012 1004

Context switch - example

4) After storage of registers of T1 and restore of registers of T2 (KERNEL MODE)

3) After temporary storage of registers (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Running State Ready
 0FFF 1880 PC 5000 +

??
PC ???? PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 2880 SP 1004
SP ???? SP A275 1002 4500 R1 ??
R1 ???? R1 25CC 1003 CD31 R2 ??
R2 ???? R2 F012 1004

TCB T1 TCB T2 kernel stack registers

State Waiting State Running
 0FFF A12C PC 5000 +

??
PC 1880 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 A275 SP 1004
SP 2880 SP A275 1002 25CC R1 ??
R1 4500 R1 25CC 1003 F012 R2 ??
R2 CD31 R2 F012 1004

Context switch - example

5) During extraction of IRET at address 5100 (KERNEL MODE)

4) After storage of registers of T1 and restore of registers of T2 (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Waiting State Running
 0FFF A12C PC 5000 +

??
PC 1880 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 A275 SP 1004
SP 2880 SP A275 1002 25CC R1 ??
R1 4500 R1 25CC 1003 F012 R2 ??
R2 CD31 R2 F012 1004

TCB T1 TCB T2 kernel stack registers

State Waiting State Running
 0FFF A12C PC 5000 +

??
PC 1880 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 A275 SP 1002
SP 2880 SP A275 1002 R1 25CC
R1 4500 R1 25CC 1003 R2 F012
R2 CD31 R2 F012 1004

Context switch - example

5) During extraction of IRET at address 5100 (KERNEL MODE)

5) During extraction of IRET at address 5100 (KERNEL MODE)

TCB T1 TCB T2 kernel stack registers

State Waiting State Running
 0FFF A12C PC 5000 +

??
PC 1880 PC A12C 1000 16F2 PS AA45
PS 16F2 PS 16F2 1001 A275 SP 1002
SP 2880 SP A275 1002 R1 25CC
R1 4500 R1 25CC 1003 R2 F012
R2 CD31 R2 F012 1004

TCB T1 TCB T2 kernel stack registers
State Waiting State Running 0FFF PC A12C

PC 1880 PC A12C 1000 PS 16F2
PS 16F2 PS 16F2 1001 SP A275
SP 2880 SP A275 1002 R1 4500
R1 4500 R1 25CC 1003 R2 CD31
R2 CD31 R2 F012 1004

