
Structure

Unix architecture

OS kernel: processes, memory management, file system, I/O

Standard library (printf, fork, …)

System tools (shell, editors, compilers, …)

hardware

users

System call

Functions of the
standard library

Kernel
Mode

User
Mode

Windows architecture

Hardware

HAL

Kernel

Executive

Device drivers kernel

 mode

Env. subsystems

Process C
Process B

Process A
user

 mode

Programming Interface

Main Points

• Creating and managing processes

– fork, exec, wait

• Performing I/O

– open, read, write, close

• Communicating between processes

– pipe, dup, select, connect

• Example: implementing a shell

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of

programs to do some task

– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c

cc –c sourcefile2.c

ln –o program sourcefile1.o sourcefile2.o

Question

• If the shell runs at user-level, what system
calls does it make to run each of the
programs?

– Ex: cc, ln

Windows CreateProcess

• System call to create a new process to run a
program
– Create and initialize the process control block (PCB) in

the kernel
– Create and initialize a new address space
– Load the program into the address space
– Copy arguments into memory in the address space
– Initialize the hardware context to start execution at

``start'’
– Inform the scheduler that the new process is ready to

run

Windows CreateProcess API
(simplified)

if (!CreateProcess(
 NULL, // No module name (use command line)
 argv[1], // Command line
 NULL, // Process handle not inheritable
 NULL, // Thread handle not inheritable
 FALSE, // Set handle inheritance to FALSE
 0, // No creation flags
 NULL, // Use parent's environment block
 NULL, // Use parent's starting directory
 &si, // Pointer to STARTUPINFO structure
 &pi) // Pointer to PROCESS_INFORMATION structure
)

UNIX Process Management

• UNIX fork – system call to create a copy of the
current process, and start it running
– No arguments!

• UNIX exec – system call to change the program
being run by the current process

• UNIX wait – system call to wait for a process to
finish

• UNIX signal – system call to send a notification
to another process

UNIX fork()

• fork() is used to generate a child process:

– The father and its child share the same code

– The child process inherits a copy of the kernel and
user data of the father

father

child

fork()

UNIX fork()

• fork() does not take input params

• Returns an integer:

– For the child it is 0

– For the father is:

• A positive value that represents the PID of the child

• A negative value that represents an error code

UNIX Process Management

Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) { // I'm the child process

 printf("I am process #%d\n", getpid());

 return 0;

} else { // I'm the parent process

 printf("I am parent of process #%d\n", child_pid);

 return 0;

}

Questions

• Can UNIX fork() return an error? Why?

• Can UNIX exec() return an error? Why?

• Can UNIX wait() ever return immediately?
Why?

Implementing UNIX fork

Steps to implement UNIX fork
– Create and initialize the process control block (PCB) in

the kernel
• Namely, a process structure and a user structure

– Create a new address space

– Initialize the address space with a copy of the entire
contents of the address space of the parent

– Inherit the execution context of the parent (e.g., any
open files)

– Inform the scheduler that the new process is ready to
run

Implementing UNIX fork

Addressing spaces of the father and the child after a successful fork

Text
(shared)

Data

Stack

free

0

232 - 1

heap

Father Child

copy

Text
(shared)

Data

Stack

free

0

232 - 1

heap

Implementing UNIX fork

Addressing spaces of the father and the child after a successful fork

Text
(shared)

Data

Stack

free

0

232 - 1

heap

Father (PID=34) Child (PID=45)

Text
(shared)

Data

Stack

free

0

232 - 1

heap
PC = instruction

after fork

0
&x &x 45

Implementing UNIX fork

• Steps to implement UNIX fork

– Load the program into the current address space

– Copy arguments into memory in the address
space

– Initialize the hardware context to start execution
at ``start''

UNIX exec

• Replaces the code executed by a process
– Does not create a new process, inherits PBC and

changes address space

• Replaces the data
• Example:

– int execl(char *pathname, char
*arg0, .. char *argN, (char*)0)

– Pathname is the name of an executable file
– argN[1],..argN[…] are the arguments passed to

the program
– list terminated with (char *)0

UNIX exec

• If it’s successful it does not return
– The process executes another program

• If it fails it returns an error code

• After exec the process:
– Keeps the PID

– Keeps the PCB (process and user structures)
• But it changes references to code and data memory

– Resets the pending signals

– Keeps the kernel stack

– Keeps the assigned resources (open files)

Process termination in UNIX

• A process can terminate:
– Because of an exception due to illegal actions

– By invoking the system call exit

• The terminated process returns an exit value to
its father
– The father receives the value by the system call wait

– If the father didn’t already call the wait, the
terminated process switches to zombie state

– If the father is already terminated, the init process
adopts its children

exit() and wait()

• void exit(int status);

– Status is the termination code

– exit never returns

– Frees memory, releases resources

– If it switches to zombie, keeps the PBC until the
father invokes wait

• int wait(int *status);

– Status if the PID of the terminated process or an
error code

UNIX I/O

• Uniformity
– All operations on all files, devices use the same set of

system calls: open, close, read, write

• Open before use
– Open returns a handle (file descriptor) for use in later

calls on the file

• Byte-oriented
• Kernel-buffered read/write
• Explicit close

– To garbage collect the open file descriptor

UNIX File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor

– Options:
• if file doesn’t exist, return an error

• If file doesn’t exist, create file and open it

• If file does exist, return an error

• If file does exist, open file

• If file exists but isn’t empty, nix it then open

• If file exists but isn’t empty, return an error

• …

Interface Design Question

• Why not separate syscalls for
open/create/exists?

if (!exists(name))

 create(name); // can create fail?

fd = open(name); // does the file exist?

Implementing a Shell

char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {

 child_pid = fork(); // create a child process

 if (child_pid == 0) {

 exec(prog, args); // I'm the child process. Run program

 // NOT REACHED

 } else {

 wait(child_pid); // I'm the parent, wait for child

 return 0;

 }

}

