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Unix architecture 
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Programming Interface 



Main Points 

• Creating and managing processes 

– fork, exec, wait 

• Performing I/O 

– open, read, write, close 

• Communicating between processes 

– pipe, dup, select, connect 

• Example: implementing a shell 

 



Shell 

• A shell is a job control system  
– Allows programmer to create and manage a set of 

programs to do some task 

– Windows, MacOS, Linux all have shells 

 

• Example: to compile a C program 
cc –c sourcefile1.c 

cc –c sourcefile2.c 

ln –o program sourcefile1.o sourcefile2.o 



Question 

• If the shell runs at user-level, what system 
calls does it make to run each of the 
programs? 

– Ex: cc, ln 



Windows CreateProcess 

• System call to create a new process to run a 
program 
– Create and initialize the process control block (PCB) in 

the kernel 
– Create and initialize a new address space 
– Load the program into the address space 
– Copy arguments into memory in the address space 
– Initialize the hardware context to start execution at 

``start'’ 
– Inform the scheduler that the new process is ready to 

run 



Windows CreateProcess API 
(simplified) 

if (!CreateProcess( 
    NULL,           // No module name (use command line) 
    argv[1],        // Command line 
    NULL,           // Process handle not inheritable 
    NULL,           // Thread handle not inheritable 
    FALSE,          // Set handle inheritance to FALSE 
    0,                  // No creation flags 
    NULL,           // Use parent's environment block 
    NULL,           // Use parent's starting directory 
    &si,              // Pointer to STARTUPINFO structure 
    &pi )            // Pointer to PROCESS_INFORMATION structure 
) 
 



UNIX Process Management 

• UNIX fork – system call to create a copy of the 
current process, and start it running 
– No arguments! 

• UNIX exec – system call to change the program 
being run by the current process 

• UNIX wait – system call to wait for a process to 
finish 

• UNIX signal – system call to send a notification 
to another process 



UNIX fork() 

• fork() is used to generate a child process: 

– The father and its child share the same code 

– The child process inherits a copy of the kernel and 
user data of the father 
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UNIX fork() 

• fork() does not take input params 

• Returns an integer: 

– For the child it is 0 

– For the father is: 

• A positive value that represents the PID of the child 

• A negative value that represents an error code 

 

 



UNIX Process Management 



Question: What does this code print? 

int child_pid = fork(); 

if (child_pid == 0) {           // I'm the child process 

    printf("I am process #%d\n", getpid()); 

    return 0; 

} else {                        // I'm the parent process 

    printf("I am parent of process #%d\n", child_pid); 

    return 0; 

} 

 



Questions 

• Can UNIX fork() return an error?  Why? 

 

• Can UNIX exec() return an error?  Why? 

 

• Can UNIX wait() ever return immediately?  
Why? 



Implementing UNIX fork 

Steps to implement UNIX fork 
– Create and initialize the process control block (PCB) in 

the kernel 
• Namely, a process structure and a user structure 

– Create a new address space 

– Initialize the address space with a copy of the entire 
contents of the address space of the parent 

– Inherit the execution context of the parent (e.g., any 
open files) 

– Inform the scheduler that the new process is ready to 
run 

 



Implementing UNIX fork 

Addressing spaces of the father and the child after a successful fork 
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Implementing UNIX fork 

Addressing spaces of the father and the child after a successful fork 
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Implementing UNIX fork 

• Steps to implement UNIX fork 

– Load the program into the current address space 

– Copy arguments into memory in the address 
space 

– Initialize the hardware context to start execution 
at ``start'' 



UNIX exec 

• Replaces the code executed by a process 
– Does not create a new process, inherits PBC and 

changes address space 

• Replaces the data 
• Example: 

– int execl(char *pathname, char 
*arg0, ..   char *argN, (char*)0) 

– Pathname is the name of an executable file 
– argN[1],..argN[…] are the arguments passed to 

the program  
– list terminated with (char *)0  

 
 
 



UNIX exec 

• If it’s successful it does not return 
– The process executes another program 

• If it fails it returns an error code 

• After exec the process: 
– Keeps the PID 

– Keeps the PCB (process and user structures) 
• But it changes references to code and data memory 

– Resets the pending signals 

– Keeps the kernel stack 

– Keeps the assigned resources (open files) 

 

 



Process termination in UNIX 

• A process can terminate: 
– Because of an exception due to illegal actions 

– By invoking the system call exit 

• The terminated process returns an exit value to 
its father 
– The father receives the value by the system call wait 

– If the father didn’t already call the wait, the 
terminated process switches to zombie state 

– If the father is already terminated, the init process 
adopts its children 



exit() and wait() 

• void exit(int status); 

– Status is the termination code 

– exit never returns 

– Frees memory, releases resources 

– If it switches to zombie, keeps the PBC until the 
father invokes wait  

• int wait(int *status); 

– Status if the PID of the terminated process or an 
error code 



UNIX I/O 

• Uniformity 
– All operations on all files, devices use the same set of 

system calls: open, close, read, write 

• Open before use 
– Open returns a handle (file descriptor) for use in later 

calls on the file 

• Byte-oriented 
• Kernel-buffered read/write 
• Explicit close 

– To garbage collect the open file descriptor 



UNIX File System Interface 

• UNIX file open is a Swiss Army knife: 
– Open the file, return file descriptor 

– Options:  
• if file doesn’t exist, return an error 

• If file doesn’t exist, create file and open it 

• If file does exist, return an error 

• If file does exist, open file 

• If file exists but isn’t empty, nix it then open 

• If file exists but isn’t empty, return an error 

• … 

 



Interface Design Question 

• Why not separate syscalls for 
open/create/exists? 

 

if (!exists(name)) 

     create(name);   // can create fail? 

fd = open(name);   // does the file exist? 

 



Implementing a Shell 

char *prog, **args; 

int child_pid; 

 

// Read and parse the input a line at a time 

while (readAndParseCmdLine(&prog, &args)) {    

   child_pid = fork();      // create a child process 

    if (child_pid == 0) { 

       exec(prog, args);       // I'm the child process.  Run program  

      // NOT REACHED 

    } else { 

       wait(child_pid);       // I'm the parent, wait for child 

       return 0; 

    } 

} 


