Structure

compilers web servers source code control

databases word procassing
web browsers email

partable

05 library

system call
interface

partable operating
systemn kernel
KB ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

a02.11 a/bigin 5] IDE

graphics accalerators LCD screens

Unix architecture

users
|
Functions of the | | System tools (shell, editors, compilers, ...) !
i ser
standard library
} Mode
System ca||\ Standard library (printf, fork, ...)
)
OS kernel: processes, memory management, file system, I/O ’ I|<\/|err:je|
ode

J

hardware

Windows architecture

Env. subsystems

kernel : Device drivers

Executive

|

Kernel

Hardware

Programming Interface

Main Points

Creating and managing processes

— fork, exec, wait

Performing /O

— open, read, write, close
Communicating between processes

— pipe, dup, select, connect

Example: implementing a shell

Shell

* Ashellis a job control system

— Allows programmer to create and manage a set of
programs to do some task

— Windows, MacOS, Linux all have shells

 Example: to compile a C program
cc —c sourcefilel.c
cc —c sourcefile2.c
In —o program sourcefilel.o sourcefile2.0

Question

* |f the shell runs at user-level, what system
calls does it make to run each of the
programs?

— Ex: cc, In

Windows CreateProcess

* System call to create a new process to run a
program

— Create and initialize the process control block (PCB) in
the kernel

— Create and initialize a new address space
— Load the program into the address space
— Copy arguments into memory in the address space

— Initialize the hardware context to start execution at
“start”

— Inform the scheduler that the new process is ready to
run

Windows CreateProcess API
(simplified)

if (!CreateProcess(

NULL, // No module name (use command line)
argv[1], // Command line
NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE

0, // No creation flags

NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure

&pi) // Pointer to PROCESS INFORMATION structure

UNIX Process Management

UNIX fork — system call to create a copy of the
current process, and start it running

— No arguments!

UNIX exec — system call to change the program
being run by the current process

UNIX wait — system call to wait for a process to
finish

UNIX signal — system call to send a notification
to another process

UNIX fork()

e fork () is used to generate a child process:

— The father and its child share the same code

— The child process inherits a copy of the kernel and
user data of the father

fork ()

UNIX fork()

e fork () does not take input params

* Returns an integer:
— For the child itis O

— For the father is:

* A positive value that represents the PID of the child
* A negative value that represents an error code

UNIX Process Management

pid = fork();

if [pid == 0]
exect...);

alse
wiart(pid);

fark

7
IS

pid = forkf{);

if [pid == 0}
Eec]..);

2lze
wiartipid);

2xel

miain (] |

pid = fork(l;

if [pid == 0}
e

alse
wiartipid),

weant

S

h

Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) { // I'm the child process
printf("l am process #%d\n", getpid());
return O;

}else { // I'm the parent process
printf("l am parent of process #%d\n", child_pid);
return O;

Questions

 Can UNIX fork() return an error? Why?
 Can UNIX exec() return an error? Why?

* Can UNIX wait() ever return immediately?
Why?

Implementing UNIX fork

Steps to implement UNIX fork

— Create and initialize the process control block (PCB) in
the kernel
* Namely, d process structure and a user structure

— Create a new address space

— Initialize the address space with a copy of the entire
contents of the address space of the parent

— Inherit the execution context of the parent (e.g., any
open files)

— Inform the scheduler that the new process is ready to
run

Implementing UNIX fork

Addressing spaces of the father and the child after a successful fork

cCopy
2321

free

heap heap

Data Data

Text Text
0 (shared) (shared)

Father

Implementing UNIX fork

Addressing spaces of the father and the child after a successful fork

232 _ 232 _

PC = instrugtion
heap after fork heap

Data / ~ DEE:
Text \ Text
(shared) (shared)
Father (PID=34) Child (P1D=45) |

Implementing UNIX fork

e Steps to implement UNIX fork
— Load the program into the current address space

— Copy arguments into memory in the address
space

— Initialize the hardware context to start execution
at “start"

UNIX exec

* Replaces the code executed by a process

— Does not create a new process, inherits PBC and
changes address space

* Replaces the data

 Example:
— 1int execl (char *pathname, char
*arg0, .. char *argN, (char*)0)

— Pathname isthe name of an executable file

—argN[1l],..argN/[...] are the arguments passed to
the program

— list terminated with (char *)0

UNIX exec

e |fit’s successful it does not return
— The process executes another program

e |fitfails it returns an error code

* After exec the process:
— Keeps the PID

— Keeps the PCB (process and user structures)
* But it changes references to code and data memory

— Resets the pending signals
— Keeps the kernel stack
— Keeps the assigned resources (open files)

Process termination in UNIX

* A process can terminate:
— Because of an exception due to illegal actions
— By invoking the system call exit

 The terminated process returns an exit value to
its father
— The father receives the value by the system call wait

— |f the father didn’t already call the wait, the
terminated process switches to zombie state

— If the father is already terminated, the init process
adopts its children

ex1t () and wait ()

* vold exit (1nt status);

— Status is the termination code
— exit never returns
— Frees memory, releases resources

— If it switches to zombie, keeps the PBC until the
father invokes wait

e int wait (int *status);

— Status if the PID of the terminated process or an
error code

UNIX /O

Uniformity

— All operations on all files, devices use the same set of
system calls: open, close, read, write

Open before use

— Open returns a handle (file descriptor) for use in later
calls on the file

Byte-oriented
Kernel-buffered read/write

Explicit close
— To garbage collect the open file descriptor

UNIX File System Interface

UNIX file open is a Swiss Army knife:
— Open the file, return file descriptor
— Options:
e if file doesn’t exist, return an error
* If file doesn’t exist, create file and open it
* If file does exist, return an error
* If file does exist, open file

If file exists but isn’t empty, nix it then open
If file exists but isn’t empty, return an error

Interface Design Question

 Why not separate syscalls for
open/create/exists?

if (lexists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

Implementing a Shell

char *prog, **args;
int child_pid;

// Read and parse the input a line at a time
while (readAndParseCmdLine(&prog, &args)) {
child_pid =fork(); // create a child process
if (child_pid == 0) {
exec(prog, args); //I'm the child process. Run program
// NOT REACHED
} else {
wait(child_pid); //I'm the parent, wait for child
return O;

}

