
Jupyter and Python
Basics

D
at

a
Jo

ur
na

lis
m

Angelica Lo Duca
angelica.loduca@iit.cnr.it

Jupyter Basics
extracted from: https://www.dataquest.io/blog/jupyter-notebook-tutorial/

https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Jupyter Notebook
Notebook documents (or “notebooks”, all lower case) are documents produced by
the Jupyter Notebook App, which contain both computer code (e.g. python) and
rich text elements (paragraph, equations, figures, links, etc…).

From Jupyter Notebook Beginner Guide

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

Build the first Notebook
● Run Jupyter by typing on the console: jupyter-notebook or jupyter notebook
● Jupyter Notebook opens in the browser, with the URL like

http://localhost:8888/tree
● A dashboard opens

Build the first Notebook
Create the first notebook, click the “New”
button in the top-right and select “Python
3”

The notebook opens

Its name is Untitled.ipynb

The Notebook Interface
● A kernel is a “computational engine” that executes the code contained in a

notebook document.
● A cell is a container for text to be displayed in the notebook or code to be

executed by the notebook’s kernel.
○ A code cell contains code to be executed in the kernel. When the code is run, the notebook

displays the output below the code cell that generated it.
○ A Markdown cell contains text formatted using Markdown and displays its output in-place

when the Markdown cell is run.

To run a cell: Ctrl + Enter / Cmd + Enter

Commands
● Toggle between edit and command mode with Esc and Enter, respectively.
● Once in command mode:

○ Scroll up and down your cells with your Up and Down keys.
○ Press A or B to insert a new cell above or below the active cell.
○ M will transform the active cell to a Markdown cell.
○ Y will set the active cell to a code cell.
○ D + D (D twice) will delete the active cell.
○ Z will undo cell deletion.
○ Hold Shift and press Up or Down to select multiple cells at once. With multiple cells selected,

Shift + M will merge your selection.

Python Basics
extracted from: https://www.csee.umbc.edu/courses/671/fall09/notes/python1.ppt

 and https://www.csee.umbc.edu/courses/671/fall09/notes/python2.ppt

https://www.csee.umbc.edu/courses/671/fall09/notes/python1.ppt
https://www.csee.umbc.edu/courses/671/fall09/notes/python2.ppt

Basic Datatypes
∙ Integers (default for numbers)

z = 5 / 2 # Answer 2, integer division

∙ Floats
x = 3.456

∙ Strings
name = “Angelica”

∙ Booleans
option = True

option = False

Whitespace
• Whitespace is meaningful in Python: especially indentation and

placement of newlines
• Use a newline to end a line of code
• Use \ when must go to next line prematurely
• No braces {} to mark blocks of code, use consistent indentation instead

• First line with less indentation is outside of the block
• First line with more indentation starts a nested block

Comments
∙ Start comments with #, rest of line is ignored
∙ Can include a “documentation string” as the first line of a new function or
class you define

this is a comment

Assignment
∙ Basic assignment

x = 2

∙You can assign to multiple names at the same time
x, y = 2, 3

Accessing Non-Existent Name

Accessing a name before it’s been properly created (by placing it on the
left side of an assignment), raises an error

y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
y = 3
y

Sequence Types

Sequence Types
1. Tuple: (‘john’, 32, [CMSC])

∙ A simple immutable ordered sequence of items
∙ Items can be of mixed types, including collection types

2. Strings: “John Smith”
• Immutable
• Conceptually very much like a tuple

4. List: [1, 2, ‘john’, (‘up’, ‘down’)]
∙ Mutable ordered sequence of items of mixed types

Sequence Types 1

∙ Define tuples using parentheses and commas
tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

∙ Define lists are using square brackets and commas
li = [“abc”, 34, 4.34, 23]

∙ Define strings using quotes (“, ‘, or “““).
st = “Hello World”
st = ‘Hello World’
st = “““This is a multi-line
string that uses triple quotes.”””

Sequence Types 2
∙ Access individual members of a tuple, list, or string using square bracket

“array” notation

tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
tu[1] # Second item in the tuple.
 ‘abc’

li = [“abc”, 34, 4.34, 23]
li[1] # Second item in the list.
 34

st = “Hello World”
st[1] # Second character in string.
 ‘e’

Positive and negative indices

t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0
t[1]

‘abc’

Negative index: count from right, starting with –1
t[-3]

4.56

Slicing: return copy of a subset

t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the original members. Start
copying at the first index, and stop copying before second.
t[1:4]

(‘abc’, 4.56, (2,3))
Negative indices count from end
t[1:-1]

(‘abc’, 4.56, (2,3))

Slicing: return copy of a =subset

t = (23, ‘abc’, 4.56, (2,3), ‘def’)
Omit first index to make copy starting from beginning of the container
t[:2]

(23, ‘abc’)
Omit second index to make copy starting at first index and going to end
t[2:]

(4.56, (2,3), ‘def’)

Copying the Whole Sequence

∙ [:] makes a copy of an entire sequence

t[:]

(23, ‘abc’, 4.56, (2,3), ‘def’)

The ‘in’ Operator
∙ Boolean test whether a value is inside a container:
t = [1, 2, 4, 5]
3 in t

False
4 in t

True
4 not in t

False
∙ For strings, tests for substrings
a = 'abcde'
'c' in a

True
'cd' in a

True
'ac' in a

False

The + Operator
The + operator produces a new tuple, list, or string whose value is the
concatenation of its arguments.

(1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)

[1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]

“Hello” + “ ” + “World”
 ‘Hello World’

The * Operator
∙ The * operator produces a new tuple, list, or string that “repeats” the

original content.

(1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

[1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

“Hello” * 3
‘HelloHelloHello’

Operations on Lists Only

li = [1, 11, 3, 4, 5]

li.append(‘a’) # Note the method syntax

li

[1, 11, 3, 4, 5, ‘a’]

li.insert(2, ‘i’)

li

[1, 11, ‘i’, 3, 4, 5, ‘a’]

Operations on Lists Only
Lists have many methods, including index, count, remove, reverse, sort
li = [‘a’, ‘b’, ‘c’, ‘b’]

li.index(‘b’) # index of 1st occurrence

1
li.count(‘b’) # number of occurrences

2
li.remove(‘b’) # remove 1st occurrence

li

 [‘a’, ‘c’, ‘b’]

Operations on Lists Only
li = [5, 2, 6, 8]

li.reverse() # reverse the list *in place*
li
 [8, 6, 2, 5]

li.sort() # sort the list *in place*
li
 [2, 5, 6, 8]

Dictionaries

Dictionaries: A Mapping type
∙ Dictionaries store a mapping between a set of keys and a set of values

• Keys can be any immutable type.
• Values can be any type
• A single dictionary can store values of different types

∙ You can define, modify, view, lookup or delete the key-value pairs in the
dictionary
∙ Python’s dictionaries are also known as hash tables and associative
arrays

Creating & accessing dictionaries

d = {‘user’:‘bozo’, ‘pswd’:1234}
d[‘user’]

‘bozo’
d[‘pswd’]

123
d[‘bozo’]
Traceback (innermost last):
 File ‘<interactive input>’ line 1, in ?
KeyError: bozo

Updating Dictionaries

∙ Assigning to an existing key replaces its value
d = {‘user’:‘bozo’, ‘pswd’:1234}

 d[‘user’] = ‘clown’
d

{‘user’:‘clown’, ‘pswd’:1234}
∙ A new key-value pair can be added to the dictionary
d[‘id’] = 45
d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}
∙ Dictionaries are unordered

• New entries can appear anywhere in output

Removing dictionary entries
d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

del d[‘user’] # Remove one.

d

{‘p’:1234, ‘i’:34}
d.clear() # Remove all.

d

{}

a=[1,2]

del a[1] # del works on lists, too

a
[1]

Useful Accessor Methods

d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

d.keys() # List of keys, VERY useful
[‘user’, ‘p’, ‘i’]

d.values() # List of values
[‘bozo’, 1234, 34]

d.items() # List of item tuples
[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

Functions

The indentation matters…
First line with less
indentation is considered to be
outside of the function
definition.

Defining Functions

def get_final_answer(filename):
 line1
 line2
 return total_counter

Function definition begins with “def.” Function name and its
arguments.

The keyword ‘return’ indicates the
value to be sent back to the caller.

Colon.

Calling a Function

∙ The syntax for a function call is:

def myfun(x, y):
 return x * y

myfun(3, 4)
 12

Default Values for Arguments
∙ You can provide default values for a function’s arguments
∙ These arguments are optional when the function is called

def myfun(b, c=3, d=“hello”):
 return b + c

myfun(5,3,”hello”)
myfun(5,3)
myfun(5)

All of the above function calls return 8

Keyword Arguments
∙ You can call a function with some or all of its arguments out of order as
long as you specify their names
∙ You can also just use keywords for a final subset of the arguments.

def myfun(a, b, c):
 return a-b

myfun(2, 1, 43)
 1
myfun(c=43, b=1, a=2)
 1
myfun(2, c=43, b=1)
 1

Lambda Notation

∙ Python uses a lambda notation to create anonymous functions
applier(lambda z: z * 4, 7)

 28

∙ Python supports functional programming idioms, including closures and
continuations

Control of Flow

if Statements
if x == 3:
print “X equals 3.”

elif x == 2:
print “X equals 2.”

else:
print “X equals something else.”

print “This is outside the ‘if’.”

Be careful! The keyword if is also used in the syntax of filtered list
comprehensions. Note:
∙ Use of indentation for blocks
∙ Colon (:) after boolean expression

while Loops
x = 3
while x < 5:

print x, "still in the loop"
x = x + 1

3 still in the loop
4 still in the loop

x = 6
while x < 5:

print x, "still in the loop"

break and continue
∙You can use the keyword break inside a loop to leave the while loop
entirely.

∙You can use the keyword continue inside a loop to stop processing the
current iteration of the loop and to immediately go on to the next one.

assert
∙An assert statement will check to make sure that something is true during
the course of a program.
• If the condition if false, the program stops

— (more accurately: the program throws an exception)

assert(number_of_players < 5)

For Loops 1

∙ A for-loop steps through each of the items in a collection type, or any
other type of object which is “iterable”
for <item> in <collection>:

<statements>
∙ If <collection> is a list or a tuple, then the loop steps through each
element of the sequence
∙ If <collection> is a string, then the loop steps through each character of
the string
for someChar in “Hello World”:
 print someChar

For Loops 2
for <item> in <collection>:
<statements>

∙ <item> can be more than a single variable name
∙When the <collection> elements are themselves sequences, then <item>
can match the structure of the elements.
∙ This multiple assignment can make it easier to access the individual parts of
each element
for (x,y) in [(a,1),(b,2),(c,3),(d,4)]:

print x

For loops & the range() function

∙ Since a variable often ranges over some sequence of numbers, the
range() function returns a list of numbers from 0 up to but not including
the number we pass to it.
∙ range(5) returns [0,1,2,3,4]
∙ So we could say:
for x in range(5):
 print x

∙ (There are more complex forms of range() that provide richer
functionality…)

For Loops and Dictionaries
ages = { "Sam" : 4, "Mary" : 3, "Bill" : 2 }

ages

{'Bill': 2, 'Mary': 3, 'Sam': 4}

for name in ages.keys():

print name, ages[name]

Bill 2

Mary 3

Sam 4

